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Resumo

As bananas desempenham um papel crucial na alimentacdo de milhdes de pessoas e sdo
fonte de renda para milhares de familias em varios paises. No Brasil, o Estado de S&o
Paulo se destaca como o maior produtor, seguido pela Bahia e Minas Gerais. As
bananeiras do subgrupo Prata, como ‘Prata-Ana’, ‘Gorutuba’ e ‘Catarina’, sdo os
principais gendtipos cultivados no pais, formam a base da producdo brasileira,
representando aproximadamente 70% da area cultivada, principalmente para o consumo
doméstico. A murcha de Fusarium, causada pelo fungo Fusarium oxysporum f. sp.
cubense (Foc), é reconhecida como uma das doengas mais devastadoras para a cultura
da bananeira em todo o mundo. A Raca Tropical 4 (TR4) destréi as plantacbes de
banana em quaisquer situacfes ambientais, ja a Raca Subtropical (SR4) causa danos
quando as plantas s&o submetidas a algum estresses em condi¢bes ambientais
subtropicais. Com isso, programas de melhoramento genético da bananeira em todo o
mundo tém utilizado diversas tecnologias para gerar novos genotipos resistentes. Diante
deste contexto, o trabalho teve como objetivo inicial elaborar uma revisdo sistematica
sobre o papel da variagdo somaclonal no melhoramento genético vegetal. Assim, um
protocolo foi criado e rigorosamente seguido para cumprir as diretrizes estabelecidas
nos itens preferenciais de relatorios para revisdes sistematicas e meta-analises
(PRISMA). A analise dos 219 artigos selecionados revelaram que o numero de
subcultivos e os reguladores vegetais sdo as principais fontes de variagdo somaclonal in
vitro. A revisao sistematica reuniu ainda informacdes sobre alteracfes morfoldgicas nos
somaclones gerados e ferramentas para sua identificacdo, enriquecendo o conhecimento
sobre essa técnica. Este trabalho também teve como objetivo induzir variacdo
somaclonal in vitro em bananeiras da cultivar Prata Catarina para selecionar somaclones
resistentes ao Isolado 229 de Foc. Foram selecionados 13 somaclones resistentes entre
os dois tratamentos testados. As avaliac@es histoldgicas e histoquimicas podem indicar
que houve a ativacdo de mecanismos de resisténcia pos-formados. As analises
moleculares indicaram ndo haver diferencas genéticas entre os somaclones e a planta
comercial, indicando que as caracteristicas agronémicas comerciais ndo foram afetadas.
Em conclusdo, este trabalho retine informacdes sobre a técnica de variagdo somaclonal e
suas contribuicdes, oferecendo novas fontes de resisténcia a murcha de Fusarium para o
programa de melhoramento genético da bananeira.

Palavras-chave: Musa spp.; somaclones; variacdo somaclonal; melhoramento genético.



ABSTRACT

Bananas play a crucial role in the diet of millions of people and are a source of income
for thousands of families in various countries. In Brazil, the state of Sdo Paulo stands
out as the largest producer, followed by Bahia and Minas Gerais. Banana plants of the
Prata subgroup, such as ‘Prata-Ana,” ‘Gorutuba,’ and ‘Catarina,’ are the main genotypes
cultivated in the country, forming the basis of Brazilian production and representing
approximately 70% of the cultivated area, mainly for domestic consumption. Fusarium
wilt, caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), is recognized as
one of the most devastating diseases for banana cultivation worldwide. Tropical Race 4
(TR4) destroys banana plantations in all environmental conditions, while Subtropical
Race (SR4) causes damage when plants are subjected to some stress in subtropical
environmental conditions. Consequently, banana breeding programs worldwide have
used various technologies to generate new resistant genotypes. In this context, the initial
aim of this work was to conduct a systematic review on the role of somaclonal variation
in plant breeding. A protocol was created and rigorously followed to meet the guidelines
established in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA). The analysis of the 219 selected articles revealed that the number of
subcultures and plant growth regulators are the main sources of in vitro somaclonal
variation. The systematic review also gathered information on morphological changes in
the generated somaclones and tools for their identification, enriching the knowledge of
this technique. This work also aimed to induce in vitro somaclonal variation in Prata
Catarina banana plants to select somaclones resistant to Foc Isolate 229. Thirteen
resistant somaclones were selected from the two tested treatments. Histological and
histochemical evaluations may indicate the activation of post-formed resistance
mechanisms. Molecular analyses indicated no genetic differences between the
somaclones and the commercial plant, suggesting that commercial agronomic
characteristics were not affected. In conclusion, this work gathers information on the
technique of somaclonal variation and its contributions, offering new sources of
resistance to Fusarium wilt for the banana breeding program.

Keywords: Musa spp.; somaclones; somaclonal variation; genetic improvement.
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INTRODUCAO GERAL

As bananas representam uma das frutas mais consumidas em todo o mundo e
desempenham um papel fundamental na alimentacdo de milhdes de pessoas (Pico et al.,
2019; Kb et al., 2024). Em 2022, a lideranca na producdo global de bananas foi da
india, com 34,5 milhdes de toneladas, seguida pela China, que registrou 11,8 milhdes de
toneladas. O Brasil ocupou o quinto lugar, com uma producéo de 7 milhGes de toneladas
(FAOSTAT, 2024).

Segundo dados do IBGE (2022), o valor da producao nacional em 2022 foi de
11,9 bilhdes de reais. O Estado de Sao Paulo liderou como o maior produtor, com uma
producéo avaliada em 1,705 bilhdes de reais, seguido pelo Estado da Bahia, com 1,388
bilhdes, e Minas Gerais, com 1,179 bilhdes. As bananeiras do subgrupo Cavendish sdo
produzidas com maior frequéncia para exportacdo no Brasil, enquanto as do grupo Prata
sdo cultivadas principalmente para consumo doméstico.

Apesar da grande escala de producdo, a bananicultura enfrenta desafios
decorrentes de doengas que limitam a sua producdo (Cordeiro et al., 2016). Destaque
para aquelas causadas por fungos, as quais resultam em perdas significativas tanto na
qualidade, quanto na producdo da fruta. Entre essas enfermidades estdo a Sigatoka
amarela (Pseudocercospora musicola, Leach), a Sigatoka negra (Pseudocercospora
fijiensis, Morelet) e a Murcha de Fusarium (Fusarium oxysporum f. sp. cubense)
(Ploetz, 2015; Pegg et al., 2019; Ploetz, 2021).

A murcha de Fusarium, causada por Fusarium oxysporum f. sp. cubense (Foc), é
reconhecida como uma das doencas mais devastadoras que afeta a cultura da banana em
todo o0 mundo (Maryani et al., 2019). Esse patdgeno estd amplamente disseminado e é
encontrado em praticamente todas as regides produtoras de banana. Fusarium é um
fungo habitante do solo que forma estruturas de resisténcia, conhecidas como
clamiddsporos, o que possibilita sua sobrevivéncia por décadas (Pegg et al., 2019). Foc
foi subdividido em racas distintas, sendo a raca 4, especialmente a raca Tropical 4
(TR4), altamente patogénica, que causa uma maior preocupagdo para a industria da
banana (Ploetz, 2015).

O Foc TR4 esta disseminado em muitos paises da Asia, Africa e Oceania, mas
até o momento ndo foi detectado no Brasil, sendo classificado como uma praga
quarentenaria pelo Ministério da Agricultura e Pecuaria do pais. Entretanto, a doenca foi

oficialmente identificada na América Latina, com casos registrados na Colémbia em
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agosto de 2019, no Peru em abril de 2021 e na Venezuela no inicio de 2023 (Garcia-
Bastidas et al., 2020; Acufa et al., 2021; Mejias Herrera et al., 2023; Martinez et al.,
2024).

Diante disso, o desenvolvimento de variedades resistentes € considerado como o
método mais eficaz para mitigar os danos causados pelo fungo. Programas de
melhoramento genético da bananeira em todo mundo, vém desenvolvendo diversas
tecnologias para gerar novos gendtipos de bananeira resistentes (Hwang e Ko, 2004;
Molina, 2016; Ferreira et al., 2020; Amorim et al., 2021; Rebougas et al., 2021; Rocha
et al., 2022). A aplicacdo de ferramentas biotecnoldgicas tem impulsionado os estudos
genéticos da bananeira, destacando-se técnicas como engenharia genética, inducao de
mutacOes e variacao somaclonal.

Dentre as ferramentas citadas, a inducdo de variagdes somaclonais tem sido
reconhecida como uma importante estratégia para gerar variabilidade genética e como
uma alternativa para o melhoramento genético da bananeira. Isso possibilita a selecao
de somaclones com caracteristicas desejadas. A selecdo de somaclones em espécies de
propagacdo vegetativa, como as bananeiras, desempenha um papel crucial na
multiplicacdo em larga escala de genotipos superiores. Esse processo permite preservar
sua identidade genética e proporciona aos produtores um acesso rapido a esses
gendtipos melhorados (Amorim et al., 2021).

A variacdo somaclonal surge ao submeter a planta a estresses em condic¢des de
cultivo in vitro, o que podem ocasionar disturbios durante a divisdo celular, resultando
em variacOes genéticas ou epigenéticas (Imran et al., 2021). As mudancas de origem
genética sdo herdadas por geracfes subsequentes, enquanto as mudancas epigenéticas
correspondem a variacdes transitdrias, devido ao estresse fisioldgico sofrido in vitro
(Anil et al., 2018; Penna et al., 2019; Penna et al., 2023). O numero de ciclos de
subcultivo e a influéncia de reguladores vegetais contribuem para a formacdo de
variantes somaclonais no cultivo in vitro (Amorim et al., 2021; Ferreira et al., 2023).

A inducdo de variacdo somaclonal em bananeira tem se mostrado eficaz na
geracdo de somaclones resistentes a murcha de Fusarium. Um exemplo notavel é o
trabalho realizado pelo Instituto de Pesquisa em Banana de Taiwan (TBRI) que
obtiveram resultados promissores ao induzir variagdo somaclonal em bananas do
subgrupo Cavendish. ldentificaram plantas resistentes a Foc TR4, como o somaclone
GCTCV-218, o qual foi posteriormente registrado para cultivo comercial sob 0 nome de
Formosona, além de duas outras variantes somaclonais denominadas GCTCV-53 e
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GCTCV-119 (Hwang e Ko, 2004; Molina, 2016). A Empresa Brasileira de Pesquisa
Agropecuéria (Embrapa) obteve resultados promissores no cultivo de bananeiras ao
desenvolver somaclones do subgrupo Cavendish por meio da inducdo de variacdo
somaclonal (Rebougas et al., 2021).

A aplicagdo da técnica de inducdo de variacdo somaclonal se mostra util em
programas de melhoramento genético direcionados a obtencéo de variedades resistentes,
ou com melhores caracteristicas agrondémicas, como também o desenvolvimento de
variedades ornamentais (Bulbarela-Marini et al., 2023; Baloch et al., 2023; Bredy, 2023,
Parrish et al., 2023; Patel et al., 2023; Pop et al., 2023; Zhang et al., 2023; Hernandez et
al. 2024). Ha uma importancia em se buscar conhecimento sobre esse tema, incluindo o
papel da variacdo somaclonal no melhoramento genético, informacdes sobre os
reagentes utilizados para induzir variagdo somaclonal, o numero de subcultivos
envolvidos, as culturas que empregam essa técnica e outros dados pertinentes.

Portanto, o objetivo desta pesquisa foi: 1) Produzir uma revisdo sistematica da
literatura publicada nos Gltimos dezesseis anos sobre o papel da variagdo somaclonal no
melhoramento genético de plantas; 2) Induzir variagdo somaclonal em bananeiras da
cultivar Prata Catarina, com o intuito de desenvolver novos gendtipos de bananeiras

resistentes a murcha de Fusarium.
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Abstract: The instability of in vitro cultures may cause genetic and epigenetic changes in crops called
somaclonal variations. Sometimes, these changes produce beneficial effects; for example, they can be
used in breeding programs to generate new cultivars with desirable characteristics. In this article,
we present a systematic review designed to answer the following question: How does somaclonal
variation contribute to plant genetic improvement? Five electronic databases were searched for
articles based on pre-established inclusion and exclusion criteria and with a standardized search
string. The somaclonal variation technique has been most frequently applied to ornamental plants,
with 49 species cited in 48 articles, and to the main agricultural crops, including sugarcane, rice,
banana, potato and wheat, in different countries worldwide. In 69 studies, a technique was applied to
evaluate the genetic diversity generated between clones, and, in 63 studies, agronomic performance
characteristics were evaluated. Other studies are related to resistance to pathogens, ornamental
characteristics and resistance to abiotic stresses. The application of the plant growth regulators (PGRs)
benzylaminopurine (BAP) and dichlorophenoxyacetic acid (2,4-D) was the most common method
for generating somaclones, and randomly amplified polymorphic DNA (RAPD) molecular markers
were the most commonly used markers for identification and characterization. Somaclonal variation
has been used in genetic improvement programs for the most economically important crops in the
world, generating genetic diversity and supporting the launch of new genotypes resistant to diseases,
pests and abiotic stresses. However, much remains to be explored, such as the genetic and epigenetic
mechanisms from which somaclonal variation is derived.

Keywords: somaclones; genetic improvement; tissue culture; somaclonal variation; DNA markers

1. Introduction

Plant diseases caused by phytopathogens cause losses to the global economy of more
than 220 billion dollars annually [1]. At least 70 billion dollars are lost due to invasive
pests worldwide, not to mention the loss of biodiversity caused by pathogens. In addition,
abiotic factors such as water deficit, salinity and temperature extremes cause approximately
30 billion dollars in losses to global agriculture. This reality threatens the food security of
several countries and harms small farmers and individuals living in regions where food
security has not yet been achieved [1].
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Therefore, genetic improvement programs seek ways to reduce the impacts caused
by diseases, pests and abiotic stresses on agricultural crops through the development
of resistant or tolerant cultivars. In order to achieve this goal, different strategies are
used. Plant cell and tissue culture are traditionally used for the production, conservation
and improvement of plant resources from an asexual process where clonal multiplication
is expected to generate genetically uniform plants [2,3]. However, Braun [4] made the
first observation and report of variation originated in cell and tissue cultures defined as
somaclonal variation [5]. This has been one of the biggest longstanding problems, i.e.,
obtaining the genetic fidelity of plants from tissue culture in vitro [6]. However, in 1981,
Larkin and Scowcroft identified somaclonal variation as a potential for crop enhancement,
and this was later documented by other researchers [3,7,8].

Since then, new somaclones from different cultures with characteristics useful for
breeding, such as resistance to pathogens, tolerance to abiotic stresses and high produc-
tivity, have been launched [9-13]. Somaclonal variation, in which clones of genetically
identical plants have different phenotypes after regeneration, was observed in most ex-
plants subjected to micropropagation. It is more evident when cells are propagated in
culture for long periods of time and when explants/micropropagated plants suffer several
subsequent subcultures. The first studies involved genetic and epigenetic variations, which
led to the hypothesis that plant growth hormones, such as auxins and cytokinins, could be
responsible for these genetic changes observed in plants [14-16].

Rai [17] discussed the source and genetic basis of somaclonal variation, its detection
methods and the advantages of this tool for agriculture, with the main emphasis on some
useful somaclonal variants released as cultivars. Other studies have reviewed the potential
application of somaclonal variants in the improvement of horticultural crops [18] and
described the current status of understanding the genetic and epigenetic changes that occur
during tissue culture [19]. To summarize the current status of knowledge generated on
somaclonal variation in plant breeding, this article presents a systematic review (SR) of
studies conducted in the last 16 years. The approach presented here makes use of the SR
tool, which provides a summary of all the relevant evidence available on the applications
of this tool in plant breeding. The main countries that work on somaclonal variation,
the somaclones of various cultures generated globally, the purposes of the generated
somaclones, the methods for induction of somaclonal variation, the number of subcultures,
PGRs most used in the induction of somaclonal variation and their doses, the explants
preferentially used, the main phenotypic characteristics observed in the somaclones, the
molecular markers frequently used in the studies to detect somaclonal variation and
information on the gene expression of some somaclones generated are presented.

2. Materials and Methods

This review was constructed based on preferred reports for SR and meta-analyses
(PRISMA) using the open access software State of the Art by SR (Start) v.3.3 Beta 03; the
three main steps used were planning, execution and summarization.

In the planning stage, a protocol was built https://doi.org/10.5281/zenodo.7674327
(accessed on 12 February 2023) to monitor the entire review process. The following features
were defined: title, objective, keywords, research questions, research sources, research
period covered and criteria for the inclusion/exclusion of articles. The main research
question guiding the SR was as follows: How does the somaclonal variation technique
contribute to plant genetic improvement? Based on this question, the secondary questions,
which are described in Table 1, were defined.
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Table 1. List of questions about the use of somaclonal variation as a tool in the genetic improvement of
agricultural crops to be answered by a systematic review of articles published in the last fifteen years.

Research Questions

Q1. In which cultures has the somaclonal variation technique been applied?

Q2. For what purposes is the somaclonal variation technique applied?

Q3. What PGRs and doses are most used to generate somaclonal variants?

Q4. How many subcultures were made to generate somaclones?

Q5. In which countries is the somaclonal variation technique most often applied?

Q6. Which somaclones have already been generated?

Q7. What are the most frequent changes observed in the phenotypic characteristics of somaclones?

Q8. What molecular tools are used to characterize somaclonal variants?

The execution stage consisted of three phases: research, selection and extraction.
The electronic searches were performed using a search string defined with the following
keywords: “plant breeding” AND “somaclonal” OR “somaclone variation”. This search
string was designed to cover the largest possible number of articles on the subject and
was used to identify articles in five databases: Web of Science (http://apps.isiknowledge.
com) (accessed on 15 February 2020), PubMed (http://www.ncbi.nlm.nih.gov/pubmed)
(accessed on 15 February 2020), Springer (https://www.springer.com/br) (accessed on 15
February 2020), Portal of Journals CAPES (http://www.periodicos.capes.gov.br/) (accessed
on 15 February 2020). and Google Scholar (https://scholar.google.com.br/schhp?hl=en&
as_sdt=0,5) (accessed on 15 February 2020). Each database was searched for articles
published over a period of 16 years. Some documents were considered relevant but were
published after the selection stage, so they were added manually. The results were exported
in the BIBTEX, MEDILINE or RIS formats compatible with Start software.

We used a protocol for the development of the SR, and the search terms were based on
the four PICO inclusion components (i.e., population, intervention, comparison, outcome
and study type) [20] (Table 2).

Table 2. Definition of the PICO terms for the research question addressed in this study of somaclonal
variation over the last 16 years.

Description Abbreviation Components of the Question
. Agricultural crops that were studied or for which somaclones
Population P
were generated.
Interest/intervention I Somaclonal variation for plant breeding.
. Studies of plant breeding methods used to generate somaclones with
Comparison C . .
agronomic traits.
Outcome 0 Overview of the technique of somaclonal variation in plant breeding.
Type of study S Scientific articles.

Initially, in the selection phase, only the title, abstract and keywords were read, and
the articles that contained the terms defined in the search string within these features were
selected. In the extraction phase, the articles were read in full, and the articles were accepted
according to the predefined inclusion (I) and exclusion (E) criteria: (I) articles that contain
in the title, abstract or keywords the terms plant breeding and somaclonal or somaclonal
variation; (E) articles published in languages other than English; (E) articles that deviate
from the topic; (E) review articles; (E) theses, dissertations and manuals; (E) book chapters;
(E) articles published in annals of events; and (E) articles on the evaluation of plant fidelity
after in vitro multiplication.

In the summarization step, graphs, tables, word clouds and bibliometric maps were
generated to compose an SR. The frequencies of articles were calculated for the questions
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described in Table 1. The graphs were generated in R software [21] with the ggplot2
and dplyr packages. The bibliometric analyses were performed using VOSviewer_1.6.17
software [22].

Risk of bias

To evaluate the risk of bias among the articles selected for this SR, we adapted the
Cochrane risk of bias tool protocol [23]. Three authors (MSF, AJR and FSN) evaluated the
quality of the methods used to select the included studies, and the questions used to assess
the risk of bias were the same as those developed for the protocol (found in Table 1). The
studies were classified according to the number of questions answered that contributed to
the SR. Three classifications were adopted:

1.  Low risk of bias (low)—articles that answered 100% of the proposed questions.
2. Moderate risk of bias (moderate)—articles that answered up to 60% of the questions.
3. High risk of bias (high)—articles that answered up to 30% of the questions.

In addition, all the PRISMA guidelines were carefully followed; the PRISMA checklist
is available for download at https://doi.org/10.5281/zenodo.7674859 (accessed on 20
February 2020).

3. Results
3.1. Screening of Studies

Figure 1 represents the PRISMA flow diagram used to screen the articles analysed
in this review. The Web of Science was the database that contributed most to this review,
with 1192 articles (27%). PubMed Central contributed 1069 articles (25%), followed by
Google Scholar with 1010 (23%), Springer with 997 (23%) and the CAPES journal portal
with 75 (2%) articles. Eleven important articles were manually added to this review because
they reported the generation and study of somaclones with resistance to diseases, abiotic
stresses and agronomic and molecular aspects [12,13,15,24-31]. In total, 4351 articles were
identified in the databases, of which 882 were duplicates and 3725 were eliminated in
the selection process. In the extraction phase, 629 articles were read in full, and 410 were
excluded because they did not meet the inclusion criteria. A total of 219 articles were
selected for this SR. The manuscripts were stored in an open access digital library available
at https://doi.org/10.5281/zenodo.7641768 (accessed on 22 February 2023).

3.2. Bibliometric Analysis

A bibliometric map was made from the titles of the accepted articles (n = 219)
(Figure 2A). There was a predominance of the terms somaclonal variation, somaclonal
variant and somaclone between 2010 and 2015, which indicates a trend of publications
during this period. The term RAPD (Randomly Amplified Polymorphic DNA) was also
predominant in studies published between 2005 and 2015, showing that this molecular tech-
nique was used in previous studies and that new approaches related to molecular markers
are possibly being adopted nowadays (Figure 2A). A second bibliometric map revealed the
five journals with the largest numbers of publications on the theme of somaclonal variation;
Plant Cell and Tissue and Organ Culture had the most publications, followed by the African
Journal of Science and Technology, In Vitro Cellular and Developmental Biology —Plant,
Plant Cell Reports and Euphytica (Figure 2B).

3.3. Main Countries and Cultures Evaluated

Studies on somaclonal variation in plant breeding were found in 42 countries, but most
are concentrated in India (43) (Figure 3). Other countries that published a relatively high
number of articles on the subject were Pakistan (18), China (18), Egypt (14), Brazil (12), Iran
(11), the United States (10), Poland (10) and South Korea (9). Countries with fewer than 10
published articles are represented in bright green in the map shown in Figure 3. Regarding
the agricultural crops studied, 82 species were evaluated, separated by crop types and
summarized in Table S1. The plant species that are among the 10 most important crops in
terms of production, according to data from the Food and Agriculture Organization (FAO)
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of the United Nations, were not separated. The other species were classified by cultivation
type: fruits (9 species and 26 articles); forage, grasses and cereals (16 species and 21 articles);
vegetables, roots and tubers (7 species and 17 articles); medicinal (13 species and 15 articles),
condiments and spices (4 species and 9 articles); and ornamental (24 species and 45 articles)
(Table S1). The most studied species were sugarcane (30), rice (18), banana (13), potato (10)
and wheat (11) (Table S1).

Records identified from Databases:
= PubMed Central —————* n= 1069
£ Google Academic ——» n=1010
8 Periodicos CAPES ——* n=75
m - p—
£ Springer » 1 =997
< Web of Science ———————* n=1192
= Manually » =11
Total: 4.354
Records excluded Records
=375 screened
] n=~629
gn l
-
- 1]
o
[¥]
“ Records excluded with exclusion criteria
and duplicates
n=410
=
Total studies
n=219

Figure 1. PRISMA flowchart. Process of selecting articles for inclusion or exclusion in a systematic
review of the application of the somaclonal variation technique for plant genetic improvement;

n = number of articles.

In India, the largest numbers of studies have been conducted on sugarcane (14),
medicinal plants (8) and forage, grasses and cereals (7); in Pakistan, sugarcane (14) and
potato (5); in China, rice (6) and ornamental plants (5); in Egypt, potato (3), vegetables,
roots and tubers (3) and wheat (3); in Iran, fruits (4); in Brazil, ornamental plants (7) and
fruits (2); in the United States and South Korea, ornamental plants (6, 4); and in Poland,
vegetables, roots and tubers (Figure 3).

The largest number of somaclones has been generated for sugarcane (16), followed by
ornamental plants (14), banana (9), medicinal plants (6), wheat (6) and rice (5) (Figure 4).
Other crops generated a lower number of somaclones, such as millet (4), strawberries (4),
pineapples (3), cactus (3) and potato (3) (Figure 4). A smaller number of somaclones was
generated for other crops.
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Figure 2. Biometric maps of manuscripts in the last 16 years regarding somaclonal variation in plant
genetic breeding. Frequency of keywords (A); Frequency of Scientific Journals that published the

most (B).
3.4. Methods for Inducing Somaclonal Variation

Regarding the method used to induce somaclonal variation, 154 articles mentioned
only PGRs to induce variation. In 65 articles, previously generated somaclones were
studied, and the method used for their generation was not reported (Figure 5). A higher
number of studies was directed to evaluate the somaclones in the context of existing
genetic diversity (69), followed by studies on agronomic traits for genetic improvement
(63), pathogen-resistant somaclones (29), somaclones with ornamental characteristics (22),
tolerance to salinity (17), tolerance to abiotic stress (10) and tolerance to water deficit (9)
(Figure 5).

Of the articles that reported the use of PGRs, 68 reported benzylaminopurine (BAP), 62
dichlorophenocytic acid (2,4-D); 40 acetic ®-naphthalene acid (NAA); 25 kinin (KIN/KT), 23
idolacetic acid (IAA); 15 reported indole-3-butyric acid (IBA); and 12 tiazuron (TDZ). Sixty-
five articles did not mention the use of PGRs, as they evaluated only somaclones previously
generated in other studies (Figure 6). The most used PGRs to generate somaclones with
desirable agronomic characteristics in molecular studies of genetic diversity and pathogen
resistance were BAP, 2,4-D and NAA, respectively (Figure 6). IAA was mainly used to
promote variations related to resistance to pathogens; KIN, IBA and TDZ were used to
induce variation in order to obtain the molecular characteristics of genetic and agronomic
variability generated in somaclones (Figure 6).
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Figure 3. Number of articles published on somaclonal variation around the world in the last 16 years
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approximately 21 studies on somaclonal variation, and the red colour represents countries with a
higher number of studies on somaclonal variation.
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Figure 4. Number of generated somaclones separated by culture in the studies included in a system-
atic review of the application of somaclonal variation in plant genetic improvement.
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Figure 6. Most commonly used PGRs and the purpose of inducing somaclonal variation. benzy-
laminopurine (BAP); Dichlorophenoxyacetic acid (2,4-D); ®-naphthalene acetic acid (NAA); kinetin
(KIN/KT); idolacetic acid (IAA); indole-3-butyric acid (IBA); thidiazuron (TDZ). The data were

obtained from the study of 219 articles included in an SR of the application of somaclonal variation in
plant breeding.

There was high variation between the doses of the PGRs applied in the different
manuscripts, varying from 0.01 mg/L to 16 mg/L (Figure 7). In general, the most reported
doses of PGRs varied between the PGRs, whereas BAP presented the highest number of
different doses applied per manuscript followed by 2,4-D and NAA (Figure 7). The most
applied doses for the BAP were 1 mg/L (23), 2 mg/L (21), 0.05 mg/L (17) and 3 mg/L (9). For
the 2,4-D, the most applied doses were 2 mg/L (26), 1 mg/L (18) and 3 mg/L (10) (Figure 8).
The most applied doses for the NAA were 1 mg/L (13), 0.05 mg/L (11), 2 mg/L (9) and
0.1 mg/L (8). The KIN was mostly applied in doses of 0.05 mg/L (8), 1 mg/L (8) and 2 mg/L
(7); IAA was preferably applied in doses of 2 mg/L (8) and 1 mg/L (5). The most applied
doses for the TDZ and IBA were 1 mg/L (8, 6) and 2 mg/L (4, 5), respectively (Figure 7).
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Figure 7. The most commonly used doses of PGRs to generate somaclonal variants in vitro.
Dichlorophenoxyacetic acid (2,4-D); benzylaminopurine (BAP); idolacetic acid (IAA); indole-3-butyric
acid (IBA); kinetin (KIN/KT); «-naphthalene acetic acid (NAA); thidiazuron (TDZ). The data were ob-

tained from the study of 219 articles included in a systematic review on the application of somaclonal
variation in plant breeding.
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Figure 8. Pie charts summarizing the data of subculture time and number of subcultures in published

articles in the last 16 years recognized in the systematic review: The role of somaclonal variation in
plant genetic improvement: a systematic review.

Of the articles inserted in this SR, 17 referred to the time of subculture in months
or years, ranging from one month to 40 years. In this case, five studies reported that the
subcultures were carried out for one month and some subcultures for two months, four
months and two years; both reported in three articles. The other subculture times were
reported in only 1 article, such as 40, 14 and 10 years and 8 months (Figure 8). The studies
that made clear the number of subcultures totaled 38; within these studies, the highest
number recorded was 25 subcultures, and the lowest was only 2 subcultures (Figure 8).
The number of subcultures recorded in most articles were three (7), four (5) and five (5).

3.5. Types of Explants

Among the sources of explants used, most articles mentioned leaves, except in studies
of the species Vitis vinifera, Vanilla planifolia, Pisum sativum, Pennisetum glaucum and
plants belonging to the family Poaceae and Orchidaceae. Seeds were the second most used
source of explants, and this type of explant was most common among species belonging
to the family Orchidaceae, Triticum species and other crops. In the articles inserted, the
most reported cultures where somaclones were produced include Saccharum officinarum,
species belonging to the Orchidaceae family and species belonging to the genus Musa.
Leaves, seeds and rhizomes were also used as sources of explant (Figure 9).
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Figure 9. Most frequently used explants for induction of somaclonal variation per culture. The data

were obtained from 219 articles included in the review of the application of somaclonal variation for
plant breeding.
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3.6. Phenotypic Modifications

Regarding the most frequent phenotypic modifications in somaclones, 69 studies de-
scribed phenotypic modifications caused by genetic variation in several cultures (Table 3).
Phenotypic changes were observed in plant structure, pigmentation, roots, stems, pseu-
dostems, flowers, leaves, fruits and seeds. Several studies have described morphological
changes in leaves, especially changes in colour and length, as detailed in Table 3. Regarding
the plant structure, the articles that reported phenotypic changes referred to the presence
of dwarf plants in different crops, such as pineapple, coffee and banana (Table 3).

Table 3. Morphological characteristics associated with the somaclonal variation event in

different cultures.

Crop Plant Part Phenotypic Characteristic Articles
Hedychiummuluense Dwarf plant [32]
Coffea arabica L. Dwarf plant [33]
Wheat spp. Dwarf plant [34]
Pineapple (Ananas comosus Structure
(L) Merr.) Dwarf plant [35]
Pineapple (Ananas comosus Dwarf plant [36]
(L.) Merr.)
Pineapple Ananas comosus var. MD2 Dwarf plant [37]
Millet genotype 5141 B Pigment Albino plant [38]
Wheat (Triticum aestivum L.) Albino plant [39]
Sweet potato (Ipomoea batatas Reduction in number and compliance [40]
(L) Lam.)
Root
Date palm (Phoenix dactylifera L.) Increase in length [41]
Wheat (Triticum aestivum L.) Increase in length [42]
Sugarcane (Saccharum officinarum) (VSI 434) Colour variation [43]
Sugarcane (Saccharum spp.) variety CoJ] 64 Increase in diameter and length [44]
Sugarcane (NIA-1198) greater length and number of [45]
internodes
Sugarcane (Saccharum spp.) Biggest diameter [46]
Sugarcane (Saccharum spp.) Stem Larger diameter and length [47]
Sugarcane (Saccharum spp.) Longer length [48]
Sugarcane (Saccharum spp.) Larger diameter and length [49]
Sugarcane (Saccharum spp.) variety BL4 Increase in quantity, smaller diameter [50]
and greater length
Cymbopogon winterianus Biggest diameter [51]
Sugarcane (Saccharum spp.) Longer length [52]
Musa co ‘Williams’, ‘Ziv’ e ‘Grand Naine’ Longer length [53]
Musa cv. ‘Grand Naine’ Pseudostem Colour variation [54]
Musa cv ‘FHIA-18" (AAAB) Appearance and colour [55]
Coffee (Coffea arabica L.) Larger number ofleaves and larger [56]
leaf area
Dieffenbachia cv. ‘Camouflage’, ‘Camille’ and ‘Star Brigh’ Leaf variegation, longer leaves and [57]
lanceolate leaves
Chrysanthemum (Dendranthema grandiflora (Ramat.) Kitam) leaves Variegated, marbled, pale green leaves [58]
Tobacco (Nicotiana tabacum) variety ‘Kanchan’ Larger number, length and width of [59]
the sheet
Scrophularia takesimensis Leaf variegation [60]
Orchid (Dendrobium sonia-28) Narrow, pointed leaves [61]
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Table 3. Cont.

Crop Plant Part Phenotypic Characteristic Articles
Japanese butterbur (Petasites japonicus) Leafblade size and leaf blade colour [62]
Rice (Oryza sativa L.) Rolling leaf [63]
Japonica rice (Oryza sativa subsp. japonica) Purple leaf sheath [64]
Dieffenbachia cv. Camouflage Variation in leaf colour [65]
Mature leaf shape and foliage colour
Sweet Potato (Ipomoea batatas Leaf petiole shorter and thicker Blade [66]
(L) Lam.) .
larger and lighter green colour
Rice (Oryza sativa L.) Sheet width [67]
Caladiums (Caladium X hortulanum Birdsey) Variation in leaf colour [68]
Epipremnum aureum ‘Marble Queen’ Corppletely green, variegated and [69]
whitish leaves
Musa ‘Prata Ana’ Absence of red spots on the leaves [11]
Strawberry (Fragaria X ananassa) Leaf area and longer leaf petioles [70]
Augustine grass (Stenotaphrum secundatum
(Walt) Kuntze) Short, narrow leaves [71]
Sugarcane ‘S97US297 Leaf area [72]
Dendrocalamus farinosus Increased sheet length and width [15]
Rice (Oryza sativa L.) ‘Pokkali’ Leaf area and dry mass [73]
Chrysanthemum (Dendranthema grandiflora (Ramat.) Inflorescence colour and shape [74]
Kitam) deviation
Phalaenopsis ‘Spring Dancer’ Petal diameter [75]
Doritaenopsis Colour, c9mplete fusion of lat.eral [76]
sepals with lip and reduced size
Flowers
Phalaenopsis ‘Wedding Promenade’ Flower width and petal thickness [77]
Chrysanthemum (Dendranthema grandiflora (Ramat.) Inflorescence colour and altered (78]
Kitam) inflorescence shape
Cl_lrysanthemum (Dendranthema grandiflora (Ramat.) Flower colour, size and weight [79]
Kitam)
Tomato (Lycopersicon esculentum Mill.) Number of fruits [80]
. Number of fruits, fruit shape and
Strawberry (Fragaria X ananassa) difference in textare [81]
. . Number of fruits and total production
Chili P C A L.
ili Pepper (Capsicum Annuum L.) of fresh and dried fruits [82]
) Pod width and length, number of
Grass pea (Lathyrus sativus L.) pods/plant, number of seeds/pod [83]
Musa cv. ‘Grand Naine’ Bunch length [84]
Fruits and Seeds Number of bunches, number of
Tomato (Lycopersicon esculentum Mill.) fruits/plant, fruit firmness and [85]
fruit weight
Wheat (Triticum aestivum L.) Ear length and grain yield [86]
Rice (Oryza sativa L) cv PR113 Gra.ins per panicle, grain weight and [87]
grainyield per plant
Sorghum (Sorghum bicolor L.) Increase in seed size and grain yield [88]
Millet (Eleusine coracana) Grain yield per plant [89]
Tomato (Lycopersicon esculentum Mill.) Number of fruits [90]

In relation to changes caused in pigmentation, the presence of albino phenotypes was
documented only in millet and wheat crops. For modifications caused in the roots, the
potato crop showed a reduction in number and conformity, and date palm and wheat crops
showed an increase in root length (Table 3). Changes in the stems were reported mainly
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for sugarcane where phenotypes with colour variation, smaller diameter or increase in
diameter and length were described, and the number of internodes increased (Table 3).

Phenotypic changes in the pseudostem were observed only for banana genotypes
with changes in length increase and colour appearance variations. In relation to leaves, the
alterations were reported mainly in medicinal plant species to increase substances used for
therapeutic and ornamental purposes, where the presence of genotypes with variegation
characteristics or alterations in colour and conformity are commercially desirable. Similarly,
morphological changes in flowers have been documented only in ornamental plants. On
the other hand, changes in fruits and seeds were reported in important food crops, mainly
to increase the number of fruits in tomato and grain yields in rice, sorghum and corn
(Table 3).

3.7. Molecular Studies

To detect somaclonal variations and analyse the genetic stability of plants grown in vitro,
DNA-based molecular markers are the most commonly used approach. Many molecular
markers were used in the studies included in this review, which varied according to culture
and evaluation purpose (Table S2). As we have already shown in our bibliometric analysis,
randomly amplified polymorphic DNA (RAPD) and Intersimple sequence repeat (ISSR)
molecular markers were used in most studies by the year 2018, with a change in recent years
to a greater number of studies with other markers, such as Methylation Sensitive Amplification
Polymorphism (MSAP), Simple Sequence Repeat (SSR), Single Nucleotide Variants (SNV) and
Amplified fragment length polymorphism (AFLP) (Figure 10). In the last year, only analyses
applying single nucleotide polymorphism (SNPs) markers were reported.
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Figure 10. Frequency of molecular markers associated with strategies to identify genetic variation
over the last 16 years. The data were obtained from articles included in the systematic review of the
application of somaclonal variation in plant breeding.

As expected for the set of inserted articles, the objective of using each of the different
molecular markers reported is to verify the mechanism related to somaclonal variation
either by methylation in DNA or changes in the sequence of DNA base pairs. Some articles
also evaluate, through markers, the presence of mutations (Table S2).

Among the 219 accepted articles, 12 evaluated the gene expression of the generated
somaclones. Studies of expression of genes related to disease resistance, ornamental traits,
protein expression and other molecular mechanisms are described in detail in Table S3.

32



Agronomy 2023, 13,730

33 0f30

A word cloud was made to identify the relevant genes analysed in somaclone studies,
where the size of the name of each gene indicates the number of articles that describe the
expression of the gene (Figure 11). The most frequent genes were PMADS4, Expansin
and OP J-06, respectively. PMADS4 genes are considered higher-order protein complexes,
responsible for changes in floral morphology in somaclonal variants. The Expansin gene is
related to cell expansion; in the articles of this review, this gene was related to dwarfism
events in somaclones. The Op J-06 genes are responsible for the Foc (Fusarium oxysporum
f. sp. cubense) resistance response to banana somaclonal variants. Other genes were
also noted in the word cloud, which indicates their expression in many studies of this
review, such as the TDFs genes that are fragments derived from transcription and the RPK2
genes that are involved in signal transduction. These are in addition to NPR1 genes which
function as master regulators of the plant hormone salicylic acid (SA) signalling and play
an essential role in plant immunity (Figure 11).
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Figure 11. Word cloud of the frequency of genes with differentiated expression shared in manuscripts
regarding somaclonal variation in plant breeding.

3.8. Risk of Bias

The articles that answered 100% of the questions were classified as having a low risk
of bias (180), and the articles that answered up to 60% of the questions were classified as
having a moderate risk of bias (39) (Table S4). Manuscripts that answered up to 30% of the
questions were not included, as they were considered as having a high risk of bias. The
results indicate that the selected articles composing this SR are of high quality.

4. Discussion
4.1. Screening of Studies

This SR comprises articles that aimed to generate somaclonal variants or study so-
maclones generated or marketed in the last 16 years. Therefore, many articles were elimi-
nated in the extraction stage (410) because they dealt only with genetic variability without
breeding purposes, where somaclonal variation is labelled in germplasm banks or in
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seedlings for field planting as an undesirable characteristic; in these cases, the objective is
to ensure the genetic fidelity of plants. On the other hand, we included in our SR a set of
219 articles that deal specifically with the use of the technique for obtaining somaclonal
variants with desirable characteristics to plant breeding programs. Although our study
includes an extensively large number of articles, which makes it difficult to extract and
discuss in detail all the data, we try to list the main data obtained in summary form to
derive conclusions and tendencies regarding the proposed subject.

Our bibliometric analysis confirmed that the term “somaclone” began to be more
frequent in the last two decades, when studies on the induction of somaclonal variation
began to be developed for genetic breeding purposes (Figure 2). At that time, several
journals that are focused on publications in the areas of tissue culture and biotechnology
began to publish articles with terms related to “somaclonal variation” (Figure 3). However,
in previous years, the changes from in vitro cultivation described in different studies were
tested to evaluate the genetic fidelity of plants in relation to the original plant and did
not have the objective of generating somaclones to be applied in the genetic improvement
of crops. Thus, the term “somaclones” becomes more frequent in recent years for this
purpose [17,91,92]).

4.2. Cultures Evaluated in Different Countries

Among the countries that perform studies on somaclonal variation, India stands out
as the country with the largest number of studies on this technique and is also the country
that has generated the largest number of somaclones in the world, especially for sugarcane
(Figure 4). India is the largest producer of sugarcane in the world [1], which may explain
why there is a significant number of studies on somaclonal variation in this crop included
in this SR.

Raza et al. [50] obtained the same results with somaclones of the BL4 cultivar. In turn,
Doule et al. [47] and Nikam et al. [93] obtained somaclones with high Brix values that
are useful for commercial cultivation. The sugarcane somaclonal variants Co94012 and
VSI434 were developed in India and presented desirable characteristics, such as high yield,
high sucrose content and moderate resistance to red rot. Somaclone VSI434 is the second
sugarcane cultivar launched in India using somaclonal variation [43].

Ethanol production increased from 662 million litres in 1980 to 61 billion litres in
2018, and it is estimated that in 2022 the demand for ethanol will reach 97 billion litres
worldwide. Currently, the United States leads the global ethanol market, followed by
Brazil. Brazil is the main producer of sugarcane in the world, responsible for 40% of global
production of this crop, which is the main raw material in the Brazilian ethanol industry.
The development of sugarcane somaclones may contribute to increased ethanol production,
increasing the production of biofuels worldwide [94-97].

A large variety of somaclones have been released for some plant species, especially
ornamental plant crops; this sector has wide possibilities due to the great diversity that
exists among ornamental species. The climate, altitude, culture of a region, etc., contribute
to the genetic diversity among species of ornamental plants in different countries [32,98].
Many somaclones are generated from ornamental plants, especially Chrysanthemum
and Cereus, the most common ornamental plants included in this SR [78,79,98]. The
genetic variability that occurs in vitro, such as changes in colours, textures and plant size,
contributes to the emergence of new phenotypic characteristics, enabling the launch of new
ornamental plants and contributing significantly to this agribusiness.

Other crops with somaclones that have been generated for commercial purposes in the
global food industry are rice, banana, potato and wheat [29,99]. La Candelaria and Yerua
are two rice somaclones that were used as sources of alleles for the development of
new strains with tolerance to salinity [100]. Wheat crops have also generated somaclones
with tolerance to this abiotic factor [101]. Other wheat somaclones were allele sources
for the development of new somaclone strains with higher root growth under drought
tolerancestress [42].
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The generation of somaclonal variants allowed the selection and commercialization
of some somaclones in certain cultures. In the banana crop, to obtain cultivars of the
Cavendish subgroup tolerant to Fusarium oxysporum f. sp. cubense, tropical breed four (Foc-
TR4), Sun et al. [102] identified somaclonal variants and selected nine resistant banana trees
that survived in fields severely infested with Foc in China in 2010. Hwang and Ko [103]
generated the cultivar ‘Formosana’ (GCTCV-218), a somaclone of Foc-TR4-tolerant banana,
which is already in use by farmers and traders in some Asian countries.

4.3. Methods for Inducing Somaclonal Variation

Among the methods used for induction of somaclonal variation, methods that depend
on PGRs were cited in 148 studies in the SR. The BAP and 2,4-D at doses of 0.5 mg/L, 1 mg/L
and 2 mg/L were the most commonly used. The BAP is a cytokinin used for regulating
the growth and development of plants in vitro [14]. The identification of genetic variation
in micropropagated plants indicates that BAP has become a tool for breeding programs,
since this regulator has been used to induce somaclones with desirable characteristics. The
second most used PGR in callus culture processes was 2,4-D, since one of the functions of
2,4-Dis to act in callogenesis, which is an important process for the indirect production of
plants. Calli contain cells or groups of cells that have active cell division centres. According
to Corpes et al. [104], the balance between auxins and cytokinins may directly influence the
process of callus formation and development.

The use of these PGRs in high doses, combined with the number of subcultures, causes
stress that leads to cellular instability, triggering genetic or epigenetic variations in plants
in vitro. Genetic alterations are permanent, usually hereditary and non-reversible, such as
changes in DNA base pairs, insertion, deletion or base substitution. Epigenetic changes are
changes in the DNA methylation pattern and can be reversible, causing the loss of epigenetic
characteristics generated in a plant [17,92,105]. Another factor of paramount importance
for studies on the induction of somaclonal variation is the number of subcultures, which
directly relates to the stress caused to the plant in vitro and induces genetic variation in
plants. The use of PGRs, such as cytokinins and auxins, directly affects the genetic variation
in plants subjected to subcultures, providing genetic variability and allowing the selection
of traits of interest for breeding programs [14,18,92,106-109].

PGRs and the number of subcultures interfere with the generation of genetic variations
in vitro and are of fundamental importance in the induction of somaclonal variation [110].
The combination of a high number of subcultures and a culture medium containing TDZ
allowed the selection of somaclones resistant to Fusarium wilt (subtropical race 4, Foc
STR4) in the cultivars ‘Prata Ana’ (Musa, AAB) [11] and ‘Grand Naine’ (Musa, AAA) [12].
According to the literature studied, the stem apices were the most popular explants for
induction of somaclonal variation in banana. The explant most commonly used to induce
somaclonal variation in sugarcane was young leaf meristem tissue [111]. This type of
explant is preferable because the formation of embryogenic calli occurs in young leaves
close to the meristem, inducing greater genetic variation [112,113]. Another widely used
explant was seeds, especially in orchids. The successful use of seeds as explants in in vitro
culture is due to the availability throughout the entire year of most crops that can be
transformed via callus and have more growth of buds in direct regeneration [114,115].

4.4. Phenotypic Modifications

In nature, the appearance of genetic variation occurs more slowly and can occur
between hundreds and thousands of years when compared to the induction of in vitro
variation. Therefore, some genetic alterations observed in the field may come from mi-
cropropagated plants in which the use of PGRs and frequent subcultures occurs [16]. The
occurrence of somaclonal variation in micropropagated plants has been studied for many
years, and these variations occur in diverse cultures subjected to in vitro cultivation. So-
maclones can be identified in a greenhouse, in the field and in vitro by observing changes
in plant traits, such as leaf colour, texture, etiolation and other phenotypic changes (Table 2).
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Epigenetic changes are responsible for phenotypic changes observed in somaclones, and
these changes, such as loss of DNA methylation, may be reversible [15].

DNA methylation in the form of 5-methylcytosine (5mC) is an important epigenetic
marker involved in gene expression and plays an important role in plant regulation and devel-
opment [116]; in plants, it usually occurs in cytosine bases in all sequence contexts [92,117,118].
Although not recorded in our data, genetic and/or epigenetic changes that occur in vitro can
also generate chimeras (mosaics). In chimeras, the variations affect the function of chloroplasts
in different regions in the plant tissues of the same plant. This event occurs through variations
in their plastomas, i.e., the region responsible for governing the expression of genes related to
photosynthesis, with this change resulting in an albino phenotype [16]. These changes are
responsible for presenting altered morphological characteristics in micropropagated plants.

In our study, we described the phenotypic changes in different parts of microprop-
agated plants in vitro to obtain somaclones (Table 3). In general, our data demonstrate
that the adoption of in vitro micropropagation methods with the use of PGRs BAP, 2,4-D,
NAA, TDZ, 1AA and IBA at different doses together with successive cultivation has the
potential to cause desirable modifications to the genetic improvement of various crops of
agricultural and commercial importance.

Many results showed that supplementation with high concentration of 6-benzylaminopurine
(4.0 mg/L BAP) alone or combined with indole-butyric acid (IBA) produces a higher percentage
of dwarf variants [32-37]. Thus, plants with the dwarf phenotype have been reported for some
crops; it serves as a marker for the presence of variations or as an important characteristic to
facilitate cultural treatments and management in monocultured species, or as characteristics of
ornamental interest [36,37]. In pineapple culture, useful mutants were identified with less spiny
leaves that are easier to manage in the field and hence, represent another dwarf phenotype with
ornamental value [35]. In wheat crop, a new strain of buckwheat, AS34, was developed by somatic
variation and will be useful in wheat breeding programs, particularly because the modification of
high commercial varieties reduces the risk of tilting; this is one of the most important agronomic
characteristics of wheat [34].

The morphological alterations were seen more in plants of ornamental and medicinal
interest. The SVT14 variants of Caladiums (Caladiumxhortulanum Birdsey) presented
rounder and thicker leaves and, in Chrysanthemum (Dendranthema grandiflora), changes
were described in relation to the number of flowers, flower size, flower weight, leaf weight,
stem weight or plant size, as well as a reduction in flowering induction time [68,78,79].

In the tobacco crop (Nicotiana tabacum), promising somaclones were developed with
variations in the increase in length, width and number of leaves that can contribute to
higher productivity of the crop [59]. Morphological changes in fruits and seeds were
also found. Our results showed that tomato crop stood out with studies that obtained
somaclones with changes in the number of fruits, i.e., an agronomic characteristic of great
importance for this crop [80,85,90].

Our results showed promising results for obtaining improved cultivars in relation to
grain yield, which is a target characteristic for the genetic improvement of large agricultural
crops, such as corn, rice and wheat [86,87,89].

4.5. Molecular Studies

Some changes in the plant genome are not morphologically identified, and even
visible changes require molecular evaluation. Thus, molecular markers are often used to
identify these variations [3]. Based on polymerase chain reaction (PCR), several molecular
markers, such as AFLPs, ISSRs and SSR markers, start codon-directed polymorphisms
(ScoTs) and RAPDs, have been used to identify somaclonal variation [41]. The RAPD
markers were the most commonly used to identify genetic variation in the studies included
in this review [99,119]. According to our data, RAPD marker tests were widely applied to
select these variations in micropropagated seedlings mainly up to the year 2018 (Figure 10).
Although currently these markers are reported as very variable and are falling into disuse,
the adoption of this technique for some time is justified because it is simpler and more
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economical, and by the ease of application in a less technical laboratory considering that
the studies inserted in this SR are since 2007.

In addition, the use of RAPD markers depends on genetic markers located in parts of
the DNA sequence, and large amounts of DNA are not required to locate the sequences.
These markers are polymorphic and express genetic variations in band imprinting, thus
making it possible to perform genetic mapping to indicate genetic diversity in parental
genotypes; this is very useful for identifying variants among genotypes in germplasm banks
with genetic characteristics that differ from clones of genotypes stored in banks [120,121].
However, we indicate that there may be a tendency to use improvements in the RAPD
technique, such as Sequence Characterized Amplified Region (SCAR), DNA amplification
fingerprint (DAF) and sequence-related amplified polymorphism (SRAP).

The ISSR marker is a low-cost and highly efficient method that detects very small
genetic variations and is widely used in studies of plant genetic diversity and to determine
genetic relationships. Similar to RAPD markers, ISSRs are dominant markers and do not
require prior sequencing. One of the advantages of the AFLP technique, besides being
a low-cost technique, is the detection of a larger number of loci and providing a wide
coverage of the genome. AFLP markers are capable of detecting genetic variations such as
chimeras and identification of mutants [122-124].

The IRAP and REMAP markers are based on retrotransposons. Retrotransposons
move through an RNA molecule, are dispersed throughout the plant genome and can
contain thousands of copies, thus contributing to size, structure, diversity and variation in
the genome which may affect gene function. The IRAP and REMAP markers are, therefore,
considered very efficient molecular markers to investigate genetic variability in plants [125].
Such markers were used to study genetic variation induced by tissue culture in date palms
(Phoenix dactylifera L.) and alkaligrass (Puccinellia chinampoensis Ohwi) [126,127]. Other
studies have demonstrated the efficacy of these markers to evaluate genetic diversity and
stability in crops such as beans [128], Egyptian barley [129] and date palm [130].

Single nucleotide polymorphism (SNP) can be applied to characterize allelic variation,
genome-wide mapping and as a tool for marker-assisted selection. In the last decade, the
identification of SNPs plays an important role in molecular genetics providing a better un-
derstanding of genetic architecture and the identification of several economically important
characteristics in various crops [131-134].

Some articles addressed the gene expression of the generated somaclones, providing
information about the genes involved in the expression of morphological and genetic traits
(Table S3). Analysis of the expression of genes involved in resistance to Fusarium oxysporum
f. sp. cubense tropical race 4 (TR4) Guijiao 9, a somaclonal variant of banana belonging to
the Cavendish subgroup, revealed that during the onset of infection by Foc TR4, resistant
Guijiao 9 showed a higher number of differentially expressed genes (DEGs) than the
susceptible Williams cultivar. Multiple resistance pathways were activated in Guijiao 9,
and the DEG genes were involved in plant-pathogen interactions, signal transduction,
secondary metabolism and other processes. This suggests that the pathogen response is
regulated by multigene networks of DEG genes related to resistance [102].

In the study of Lee et al. [77], gene expression analysis was used to evaluate levels of
endoreduplication in the variants of Phalaenopsis WP, an ornamental species. The study
indicated that the high levels of endoreduplication in these variants are associated with
changes in the normal growth of petals and leaves. In addition, high expression levels of
the HPY2 gene are associated with endoreduplication only in some cases, indicating that
additional genes are involved in the induction of polyploidy in Phalaenopsis WP variants.
However, the PMADS4 gene studied was highly expressed in the petals of normal plants
compared to those of somaclones, indicating its normal function in the development of
floral parts. Hsu et al. [135] also studied gene expression in somaclones and found five
sequences that showed higher expression levels in the wild plant than in Phalaenopsis
Hsiang Fei cv. HF. These genes correspond to sequences encoding casein kinase, isocitrate
dehydrogenase, cytochrome P450, EMF2 and an unknown protein. Two other sequences
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found in this study, whose roles were unknown, were expressed at a higher level in the
somaclone plant than in the wild-type plant. The authors concluded that mosaic colour
patterns and aberrant flower shapes may be caused by these genes in somaclonal variants
of Phalaenopsis Hsiang Fei cv. HF. Further studies on the gene expression of somaclones
are needed and may provide a more complete view of the genes involved in the changes
that occur in somaclones. Understanding the mechanisms of somaclonal variation, as well
as the expressed genes, may provide an alternative to generate somaclones of all cultures
using previously described genes.

5. Conclusions

A total of 219 articles published between 2007 and 2022 were included in this review,
encompassing a large number of studies in which somaclonal variants of various cultures
were generated. The in vitro genetic diversity created in several plant species and agricul-
tural crops has led to the emergence of characteristics related to resistance to biotic factors,
improved agronomic performance and tolerance to abiotic stresses. Somaclonal variation
has been used in genetic improvement programs of several crops worldwide, generating
genetic diversity and providing the launch of new genotypes of important agricultural
crops, such as sugarcane, wheat, rice, potato, banana and ornamental and medicinal plants,
among others, with resistance to diseases, pests and abiotic stresses.

India, Pakistan, China, Egypt, Iran and Brazil have the largest numbers of studies
on somaclonal variation in the world. Studies on sugarcane, ornamental plants and fruit
plants have been the most common over the last 16 years. Studies involving the induction
of somaclonal variation focused on the identification of molecular genetic variation, the
selection of useful agronomic traits, resistance to pathogens, tolerance to salinity and
tolerance to water deficit. Studies evaluating somaclones with tolerance to abiotic stresses,
such as lead tolerance, toxic metal tolerance and copper tolerance, were also cited. This
indicates that the induction of somaclonal variation has been explored in recent decades
from several perspectives.

PGRs and frequent subcultures are the most commonly used techniques for the in-
duction of somaclonal variation according to the results of this review. The PGRs BAP
and 2,4-D with doses of 0.5 mg, 1 mg and 2 mg/L were the most commonly used. The
use of subcultures and PGRs, and the concentrations of these PGRs to induce somaclonal
variation, does not require very sophisticated techniques; this makes them accessible for
studies of somaclonal variation in breeding programs. In addition, the launch of new
cultivars derived from somaclonal variation is not a bureaucratic process and is considered
inexpensive; it differs from the development of cultivars derived from other methods, such
as genetically modified (GM) crops, which face major social and ethical obstacles.

It is observed that techniques for inducing somaclonal variation have been applied to
a variety of crops. With the success of these techniques, many cultivars with agronomic
characteristics useful for agriculture, such as nutrient quality, yield, disease resistance and
tolerance to abiotic stress, should be included in different genetic improvement programs,
and future studies may provide relevant information. Each year, new cultivars are launched,
and many are being studied and evaluated for marketing purposes.

There is still a broad expectation that increasing the understanding of the mechanisms
involved in somaclonal variation, the expression of genes of the generated somaclones and
information about the biochemical and molecular pathways involved in the selection of
somaclonal variants needs to be further explored. Future molecular research may help
in the identification of somaclonal variants through polymorphic fragments involved in
the process of somaclonal variation and selection of some genes associated with unique
characteristics of somaclones. The expansion of knowledge on the genetic and epigenetic
mechanisms of somaclonal variation will increase its use in crop breeding.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy13030730/s1. Table S1: Plant species studied in articles on
the application of the somaclonal variation technique in plant breeding in the last 16 years. Table S2:
Molecular markers associated with strategies to identify genetic variation in various crops. The data were
obtained from articles published in the last sixteen years on the application of somaclonal variation in
plant breeding. Table S3: Genes associated with strategies to identify molecular changes in different crops.
The data were obtained from articles published in the last 16 years on the application of somaclonal
variation in plant breeding. Table S4: Assessment of the bias risk of the 219 articles included in the SR of
the application of somaclonal variation for plant breeding over the last 16 years [135-269].
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Abstract: Fusarium wilt, caused by the fungus Fusarium oxysporum £. sp. cubense (Foc), is
one of the most devastating diseases affecting banana cultivation worldwide. Although
Foc tropical race 4 (TR4) has not yet been identified in Brazilian production areas, the
damage caused by races 1 and subtropical 4 is the main cause of production losses,
especially affecting cultivars of the Prata subgroup. Thus, the induction of somaclonal
variation is a promising strategy in biotechnology to generate genetic variability and
develop resistant varieties. The aim of this study was to induce somaclonal variation in
the Prata Catarina cultivar (AAB genome) using successive subcultures in Murashige
and Skoog (MS) medium enriched with the plant regulator Thidiazuron (TDZ) at two
concentrations: 1 and 2 mg/L. After evaluating the symptoms, we selected 13 resistant
somaclones that were not infected by the fungus. Histochemical and histological
analyses of the somaclones indicated possible defense mechanisms that prevented
colonization and/or infection by Foc, such as intense production of phenolic
compounds, presence of cellulose and callose in the roots. Some somaclones showed no
pathogen structures in the xylem-conducting vessels, indicating possible pre-
penetration resistance. Furthermore, molecular studies indicated that the genetic
alterations in the somaclones may have induced resistance to Foc without
compromising the agronomic characteristics of the commercial genotype.

Keywords: Musa spp.; somaclones; genetic improvement

1. Introduction
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Bananas are the most consumed fresh fruit worldwide, with an estimated
annual production of 114 million tons [1]. Currently, banana production is
spread across several tropical and subtropical regions, especially Asia, Latin
America and the Caribbean, and Africa. The largest producers are India (34.5
million tons), China (11.8 million tons), Indonesia (9.2 million tons), and
Nigeria (8.0 million tons) [2]. Bananas of the Cavendish subgroup are grown on
a large scale for export, dominating the American and European markets;
however, there are hundreds of other cultivars used worldwide, mainly for
domestic consumption and local or regional markets, playing a crucial role in
the diet of the populations of the Indo-Malaysian, Asian, East African, and
Latin American and Caribbean regions [3].

In Latin America and the Caribbean, Brazil is the largest producer of
bananas, with an annual production of 7 million tons in an area of
approximately 460,000 hectares [3]. This results in a productivity of 15 tons per
hectare, annually generating more than USD 2.5 billion [2]. This production is
mostly conducted by small producers throughout the country, and cultivars of
the Prata subgroup (AAB genome) are widely grown and preferred by
consumers owing to their unique texture and flavor. Notably, 70% of the area
of banana cultivation is occupied by cultivars from this subgroup, especially
the Prata Catarina cultivar, namely, a natural mutant derived from the Prata-
Ana cultivar, with higher productivity and fruit quality [4]. Thus, the Prata
banana plays a vital role, both in the agricultural economy and Brazilian food
security [4,5].

Brazilian banana production, as in other countries, is threatened by the
spread of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4),
considered the most aggressive strain of Foc, which causes Fusarium wilt and
has spread to different production areas [6, 7, 8]. Foc TR4 has the ability to
infect a wide range of banana cultivars, including those of the Prata subgroup,
causing devastation to plantations in Asia, Africa, and Latin America [9, 10].

Despite the potential destructive impact of Foc TR4 in Brazilian
cultivation areas, considering its absence in the country, race 1 and subtrapical
race 4 (STR4) are currently the biggest limitations to fruit production in the
country, especially in the irrigated perimeters in the northern parts of Minas
Gerais and Bahia, Ribeira Valley (state of Sao Paulo), and northern part of
Santa Catarina; thus, extensive areas cultivated with Prata bananas are
unviable for cultivation owing to the high infestation by race 1 [12]. Therefore,
producers have replaced Prata bananas with Cavendish bananas, but this
option is risky, considering the preference of Brazilian consumers for Prata
banana types. Additionally, STR4 has caused damage to banana production in
the southeastern and southern regions of Brazil, which experience harsh
winters, facilitating infection by Foc [11]. In this context, the best strategy to
contain the damage caused by Fusarium oxysporum f. sp. cubense is the use of
resistant cultivars in addition to other tools, such as biological control and
proper soil management, which together can mitigate the effects of the disease
[13-15]. Accordingly, banana breeding programs at research institutions in
different regions of the world have focused their efforts on exploiting the
plant’s genetic resistance to the pathogen to obtain a means of long-term
control of the disease. These programs use different breeding strategies,
especially hybridization, transgenesis or gene editing, mutagenesis, and in-
vitro induction of somaclonal variation [16].

Among the aforementioned breeding methods, the induction of
somaclonal variation has been widely used as an efficient option for the genetic
improvement of various crops. This technique involves growing plant cells in a
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culture medium supplemented with cytokinins, such as Thidiazuron (TDZ),
followed by successive subcultures in vitro. These factors are decisive in
generating spontaneous and selectable genetic variations, enabling traits of
interest to be obtained for breeding [17]. The variations observed in plants can
arise from a number of factors, including somatic mutations, epigenetics, and
stresses during in-vitro cultivation. After inducing somaclonal variation, an
accurate phenotypic evaluation of the somaclones must be conducted to
identify and select those with desirable characteristics for commercial
cultivation, especially disease resistance [18-20].

In field tests, some somaclonal variants of “Cavendish” have been
obtained and shown to have some level of tolerance to Foc TR4 [21]. In another
study, somaclonal variants of the “Grande Naine” banana plant were identified
in a greenhouse [22]. The most famous banana somaclone that is widespread in
areas contaminated by Foc TR4 is Formosana (GCTCV 218), developed by the
Taiwan Biodiversity Research Institute (TBRI) in Taiwan [23]. In sugarcane, a
somaclone with resistance to brown rust (Puccinia melanocephala) was identified
[24]. In another study, a somaclone with promising agronomic characteristics
related to grain yield in wheat was identified [25]. In studies on rice (Oryza
sativa L. cv. Nipponbare), three somaclones were selected with resistance to the
fungus Magnaporthe oryzae, which causes rice brusone [26]. These results
validate the application potential of the induction of somaclonal variation for
genetic improvement in various crops.

In this study, we generated the first somaclonal variants of the Prata
subgroup banana cv. Prata Catarina through in-vitro cultivation supplemented
with the plant regulator TDZ. In the greenhouse, we selected somaclones
resistant to Fusarium wilt based on a bioassay in beds infested with a strain of
Foc STR4. To assess the extent of genetic diversity present in the selected
somaclones, we used the molecular markers inter-retrotransposon amplified
polymorphism (IRAP), retotransposon-microsatellite amplified polymorphism
(REMAP), and inter-simple sequence repeat (ISSR); to observe plant-pathogen
interactions, we evaluated compounds related to plant defense responses by
means of histological and histochemical analyses.

2. Materials and Methods
2.1 Plant material

Seedlings of the Prata Catarina (AAB) cultivar were used for
multiplication and the induction of somaclonal variation. This cultivar is a
natural mutation selected in plantation areas in Brazil, derived from the Prata-
Ana cultivar.

The seedlings were subcultured in Murashige and Skoog (MS) medium
[27], supplemented with indoleacetic acid (IAA) (1.6 mL/L) and adenine
hemisulfate (80 mg/L), to which different concentrations of TDZ were added.
The treatments comprised two doses of TDZ: treatment 1 (T1), where the MS
medium was supplemented with 1 mg of TDZ per liter; and treatment 2 (T2),
using 2 mg of TDZ per liter.

Five subcultures were employed for each treatment, with an interval
ranging between 40 and 60 days, depending on the development of the plants.
At the end of the subcultivation of the two treatments, 2,400 plants were
subjected to resistance assessment in the greenhouse, with 1,200 plants for each
dose of TDZ. Additionally, 240 commercial Prata Catarina seedlings were
selected to serve as the positive control.
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2.2. Preparation of the Foc inoculum

In this study, we used isolate CNPMF 229, selected from the biological
collection of the Phytopathology Laboratory at Embrapa Mandioca e
Fruticultura. The isolate was chosen owing to its virulence and ability to
aggressively infect banana varieties, including the Cavendish subgroup; when
inoculated under controlled conditions, the same characteristics were observed
in isolate CNPMF 218, classified as STR4, both of which were collected in the
same region, namely, in the state of Santa Catarina [16, 28]. The isolate was
grown on potato dextrose agar medium at 25 °C, under a 12-h photoperiod.
After colony growth, a suspension of conidia was prepared and approximately
20 mL was deposited on 1 kg of sterilized rice. The medium was then
incubated at 25 °C with a 12-h photoperiod. After 20 days, the colony-forming
units (CFUs) were quantified using a series of dilutions to assess the
concentration and viability of the spores. The CFUs were counted using a
Neubauer chamber, and the concentration used for soil infestation in the beds
in the greenhouse was 10° conidia/g of rice or inoculum [29].

2.3. Evaluation of resistance in the greenhouse

After 60 days of acclimatization, the somaclone seedlings were transferred
to a greenhouse and planted in beds measuring 10 x 1 m, with soil infested
with isolate CNPMF 229. After 90 days of planting, the somaclones were
assessed for resistance to Foc. To achieve this, cross-sections were made in the
rhizomes of the seedlings and the internal symptoms of rhizome discoloration
were assessed using the scale proposed by Dita et al. [30]; namely, 1: no
symptoms; 2: rhizome with initial discoloration; 3: discoloration of the rhizome
throughout the vascular system; 4: rhizome with necrosis in most internal
tissues; and 5: completely necrotic rhizome.

Based on the scores, an analysis of variance was conducted on the disease
index (DI) estimates at a 5% significance level. The data were depicted in a
boxplot graph with the DI results of the treatments. To calculate the DI, the
scores obtained in the evaluations of the internal symptoms of the disease were
transformed (0 to 4). The number of replications was based on the number of
evaluated plants, namely, 1,200 for each treatment. The analyses were
conducted using the R software [31].

2.4. Histological and histochemical analysis

Root fragments of the somaclones classified as resistant to isolate CNPMF
229 were collected and immersed in Karnovsky’s solution [32] for a period of
48 h. The fragments were then dehydrated using an increasing series of ethanol
at 3-h intervals, ranging from 30 to 100%. Infiltration and embedding were
conducted using the historesin embedding kit (hydroxyethyl methacrylate,
Leica). After polymerization of the historesin, histological sections measuring 8
pm were obtained using a Leitz 1516 microtome. These sections were mounted
on histological slides and stained with ferric chloride for 3 h to detect phenolic
compounds [33], and calcofluor white (0.01%) to detect cellulose. To detect
callose, the slides were stained with aniline blue (0.05%) for 5 to 10 min [34].
The histological sections were subsequently analyzed and photographed using
a B x 51 fluorescence microscope (Olympus Latin America).

The analysis of root clarification and staining of fungal structures was
conducted according to the method described by Phillips and Hayman [35].
The roots were immersed in a 10% potassium hydroxide (KOH) solution at
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room temperature for 48 h, followed by immersion in a 1% HCl solution for 30
min. Trypan blue dye in a 0.05% solution (lactic acid:glycerol:water = 2:1:1) was
applied for 1 h. After staining, the slides were prepared and fragments were
microphotographed using an optical microscope (Olympus Latin America).

2.5. Molecular analysis
2.5.1.  Material collection and DNA extraction

Samples of young leaves from the resistant somaclones in T1 and T2, as
well as the control, were collected and taken to Embrapa's Molecular Biology
laboratory for DNA extraction using the methodology proposed by Doyle &
Doyle [36], adapted by a previous study [37]. The DNA was quantified and its
quality was assessed on a 1% agarose gel stained with GelRed®, and subjected
to an electrophoretic run at 80 V for 1 h; subsequently, it was visualized using a
UV transluminator.

PCR amplification and analysis using IRAP, ISSR, and REMAP markers

The IRAP marker analysis was based on the method described by
Kalendar et al. [38]. The 20-pL reaction mixture comprised 25 ng of DNA, 0.3
uM primer, 2.5 mM MgCl, 0.2 mM deoxynucleotide triphosphate (dNTPs), 10x
Taq buffer, and 0.3 U Taq DNA polymerase. The amplifications were
conducted in a Veriti 96-Well Thermal Cycler (0.2 mL), Life Technologies, with
the following settings: one cycle at 94 °C for 3 min; 35 cycles at 94 °C for 30 s, 42
°C for 1 min, and 72 °C and 72 °C for 45 s; and one cycle at 72 °C for 5 min and
4°C.

Amplification between simple sequence repeats (ISSR) was conducted
using the method described by Sankar [39]. The 25-uL reaction mixture
comprised 50 ng of template DNA, 0.2 uM primer, 2.5 mM MgCl, 20 mM
dNTPs, 10x Taq buffer, and 0.2 U Taq DNA polymerase. The amplifications
were conducted in a Veriti 96-Well Thermal Cycler (0.2 mL), Life Technologies,
with the following setting: one cycle at 94 °C for 3 min; 39 cycles at 94 °C for 40
s, 48 °C for 40 s, and 72 °C for 1 min; one cycle at 72 °C for 5 min and 4 °C.

The long terminal repeat (LTR) reverse primer 7286 REMAP was
combined with seven LTR-SSR primers (Table 1), according to Kalendar et al.
[38]. REMAP amplifications were conducted with a final volume of 25 uL,
containing 50 ng of DNA, 0.2 uM LTR primer, 0.3 pM ISSR primer, 2.5 mM
MgCl 2, 2 mM dNTPs, 10x Taq buffer, and 0.2 U Taq DNA polymerase. The
amplifications were conducted in a Veriti 96-Well Thermal Cycler (0.2 mL), Life
Technologies, with the following settings: one cycle at 94 °C for 3 min; 30 cycles
at 94 °C for 30 s, 58 °C for 1 min, and 72 °C for 45 s; one cycle at 72 °C for 5 min
and 4 °C.

The amplification products were separated on a 2.0% agarose gel and
subjected to an electrophoretic run at 80 V for 3 to 4 h. They were stained with
GelRed® and visualized using a UV transluminator.

Table 1. List of markers used to discriminate somaclones of Prata banana (AAB).

Initiator Identification Nucleotide Sequence (5-3) ‘ Annealing Temperature (°C)
REMAP*
LTR reverse 7286 GGAA11CATAGCATGGATAA
TAAACGATTATC
8081 (GA)C 54°C
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8082 (CT)G 54°C
8385 (CACYG 58°C
8386 (GTG),C 58°C
8387 (CA)G 54°C
8564 (CAC)T 58°C
8565 GT(CAC), 58°C
IRAP**
LTR6149 + TR6150 CTCGCTCGCCCACTACATCAACCGCGTTTA] 42°C
CTGGTTCGCCCCATCTCTATCTATCCACACA
LTR6150+ 5’LTR2 CTGGTTCGCCCCATCTCTATCTATCCACACA 42°C
ATCATTGCCTCTAGGGCATAATTC
3’LTR + LTR6150 TGTTTCCCATGCGACGTTCCCCAACA 42°C
CTGGTTCGCCCCATCTCTATCTATCCACACA
5’LTR2 + Nikita ATCATTGCCTCTAGGGCATAATTC 42°C
CGCATTTGTTCAAGCCTAAACC
3’LTR + Nikita TGTTTCCCATGCGACGTTCCCCAACA 46°C
CGCATTTGTTCAAGCCTAAACC
Nikita + LTR6149 CGCATTTGTTCAAGCCTAAACC 46°C
CTCGCTCGCCCACTACATCAACCGCGTTTA]
5’LTR2 + LTR6150 ATCATTGCCTCTAGGGCATAATTC 46°C
CTGGTTCGCCCCATCTCTATCTATCCACACA
Sukula + LTR6150 GATAGGGTCGCATCTTGGGCGTGAC 46°C
CTGGTTCGCCCCATCTCTATCTATCCACACA
ISSR***
ISSR-7 (AG)s 48°C
ISSR-23 (AG)sAT 45°C

REMAP (Retrotransposon-microsatellite amplified polymorphism); *IRAP (Inter-retrotransposon amplified polymorphism); ***ISSR (Inter Simple Sequence Repeat).

3. Results

3.1. Resistance assessment in the greenhouse

Thirteen somaclones were selected with no symptoms (score 0) when
inoculated with isolate CNPMF 229; namely, seven from T1 (TDZ dose 1 mg/L)
named S1 to S7, and six from T2 (TDZ dose 2 mg/L), named S8 to S13. The
susceptible plants between the treatments differed in terms of the
aggressiveness of the isolate. In T1, 273 plants showed rhizomes with initial
discoloration (score 1); 573 plants showed discoloration of rhizomes
throughout the vascular system (score 2); 297 plants showed rhizomes with
necrosis in most internal tissues (score 3); and 50 plants showed completely
necrotic rhizomes (score 4). In T2, 240, 514, and 351 plants were classified with
symptoms associated with grades 1, 2, and 3, and 89 plants were totally
necrotic (grade 4). These results indicate that TDZ induced less resistance in T2
as 29% of the plants received scores of 3 or 4, which indicate greater
aggressiveness of the pathogen. In T1, most plants received scores of 1 or 2,
enabling the classification of genotypes as highly resistant or resistant (Figure
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1). Based on these results, and for the Prata Catarina cultivar, a TDZ dose of 1
mg/L is ideal for inducing resistance to Foc in future studies.

The DI percentage of the controls for the Prata Catarina cultivar reached
over 90%. In T2, the average DI percentage of the somaclone population was
60%, whereas T1 showed the lowest DI percentage, at approximately 50%
(Figure 1).
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Figure 1. Internal symptoms of Fusarium wilt in the somaclones of Prata Catarina
(AAB) banana plants evaluated in the greenhouse. (A) Bar graph with the number of
plants with each grade of symptoms according to the grading scale, which varied from
1 to 4, and cross-section of the rhizome with the respective degrees of symptoms. (B)
Boxplot of the internal disease symptom indices (DI%). Trat 1: treatment 1, with a TDZ
dose of 1 mg/L; Trat 2: treatment 2, with a TDZ dose of 2 mg/L.

3.2. Histological and histochemical evaluation

To ascertain phenolic compounds, we detected small dots with a dark
brown color in the rhizome tissue of all the somaclones and controls. The
resistant somaclones S2, S3, and S7, associated with T1, showed a higher
concentration of phenolic compounds compared with the control and other
somaclones from the same treatment, as shown in Figure 2 (C, D, and H).

In T2, the resistant somaclones S9 and S11 (K and M) showed higher
concentrations of phenolic compounds compared with the control and other
resistant somaclones from the same treatment. This difference is shown in
Figure 2.

We observed that among the two treatments, somaclones treated with a 1-
mg/L dose of TDZ (T1) showed the most intense production of phenolic
compounds.
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Figure 2. Cross-sectional micrographs of the roots of somaclones of the cultivar Prata
Catarina, considered resistant to infection by Foc isolate CNPMF 229. The red dots
indicate the presence of phenolic compounds. Controls of (A) T1 and (I) T2; (B) S1; (C)
S2; (D) S3; (E) S4; (F) S5; (G) S6; and (H) S7, namely, resistant somaclones in T1; (J) S8;
(K) 89; (L) S10; (M) S11; (N) S12; and (O) S13, namely, resistant somaclones in T2.

When assessing the presence of callose in the roots, somaclones S2 (C), S5
(F), and S7 (H), associated with T1, showed higher concentrations of this
compound within the same treatment, indicated by the higher intensity of
fluorescent light in the vascular tissue compared with the other somaclones
and control. Considering T2, only somaclone 513 (O) showed a lower
concentration of callose compared with the control. Notably, the somaclones
derived from T2 showed higher concentrations of callose than those from T1
(Figure 3).
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Figure 3. Fluorescence micrographs of cross-sections of the roots of somaclones of the
cultivar Prata Catarina, considered resistant to infection by Foc isolate CNPMF 229. The
yellow arrows indicate fluorescent regions with the presence of callose. Controls of (A)
T1 and (I) T2; (B) S1; (C) S2; (D) S3; (E) S4; (F) S5; (G) S6; and (H) S7; these represent the
resistant somaclones in T1; (J) S8; (K) S9; (L) S10; (M) S11; (N) S12; and (O) S13; these
represent the resistant somaclones in T2.

The analysis of cellulose showed that somaclones S2 (C) and S4 (E),
linked to T1, showed the highest amount of this compound, indicated by the
bluish-white color in the root tissues, followed by somaclones S5 (F), S6 (G),
and S7 (H) compared with the controls. Conversely, somaclones S1 (B) and S3
(D) indicated the lowest concentration of cellulose in this treatment, as shown
in Figure 4.

In T2, somaclones S8 (J), S9 (K), and S13 (O) showed the highest
concentration of cellulose. The other somaclones showed a lower or equal
concentration of cellulose compared with the controls. T2 showed a greater
number of somaclones with the presence of cellulose, as shown in Figure 4.
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Figure 4. Fluorescence micrographs of cross-sections of the roots of somaclones of the
cultivar Prata Catarina, considered resistant to infection by Foc isolate CNPMF 229. The
yellow arrows indicate the presence of cellulose. Controls of (A) T1 and (I) T2; (B) S1;
(C) S2; (D) S3; (E) S4; (F) S5; (G) S6; and (H) S7; these represent the resistant somaclones
in T1; (J) S8; (K) S9; (L) 510; (M) S11; (N) S12; and (O) S13; these represent the resistant
somaclones in T2.

In the evaluation of root whitening and staining, only the presence of
hyphae was observed in the controls of the two treatments without the
presence of chlamydospores, which were detected in the tissue of the vascular
system of somaclones S3 (D), S5 (F), and S6 (H) in T1. In somaclones S1 (B), 52
(C), S4 (E), and S6 (G) of the same treatment, no pathogen structures were
observed.

In T2, no pathogen structures were observed in the root tissue of
somaclones S11 (M) and S13 (O). In somaclones S8 (J), S9 (K), S10 (L), and S11
(N) of the same treatment, the presence of chlamydospores was observed, as
shown in Figure 5.
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considered resistant to infection by Foc isolate CNPMF 229. The arrows indicate
chlamydospores (Chl) and fungal hyphae (Hyp). Controls of (A) T1 and (I) T2; (B) S1;
(C) S2; (D) S3; (E) S4; (F) S5; (G) S6; and (H) S7; these represent the resistant somaclones
in T1; (J) S8; (K) S9; (L) S10; (M) S11; (N) S12; and (O) S13; these represent the resistant
somaclones in T2.

3.3. PCR amplification and marker analysis

The IRAP, REMAP, and ISSR markers could not identify significant
genetic differences between the resistant somaclones and control (cultivar Prata
Catarina), as indicated by the band patterns identified in the somaclones,
which are identical to those in the control, as shown in Figure 6 (A, B, and C).
Notably, the genetic alterations induced by the doses of TDZ in the somaclones
only affected the level of resistance of the plants. Thus, we inferred that the
selected resistant somaclones may have the same agronomic and sensory
profile as the commercial Prata Catarina cultivar; this is an important fact as it
increases the chances of adoption by producers and consumers. Notably, a
complete agronomic and sensory characterization of the resistant somaclones
will be the subject of the subsequent studies.
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Figure 6. Molecular analysis to identify genetic changes in somaclones resistant to
Foc isolate CNPMF 229. (A) Inter-retrotransposon amplified polymorphism (IRAP)
markers Sukula + LTR6149 combination; (B) Retrotransposon-microsatellite
amplified polymorphism (REMAP) markers REMAP: LTR reverse 7286 + 8387; (C)
Inter -simple sequence repeat (ISSR) markers ISSR-7. 1kb Invitrogem® marker;
Prata Catarina cultivar controls (1 and 9); 2: S1, 3: S2, 4: S3, 5: 54, 6: S5, 7: S6, and 8:
S7; these correspond to the resistant somaclones in T1. 10: S8, 11: 59, 12: S10, 13: S11,
14: S12, and 15: S13; these correspond to the resistant somaclones in T2.

4. Discussion

4.1. Assessment of resistance in the greenhouse

In this study, we induced somaclonal variants derived from the Prata
Catarina cultivar using the plant growth regulator TDZ at two concentrations,
1 and 2 mg/L. We evaluated 2,400 somaclones for their resistance to Fusarium
wilt. Among these, 13 were resistant after phenotyping in greenhouse
conditions using soil infested with the pathogen, seven were resistant with the
1-mg/L. dose, and six were resistant with the 2-mg/L. dose, thereby
corresponding to a selection pressure of 0.5%.

In our study, we observed a greater number of highly resistant and
resistant somaclones at a TDZ dose of 1 mg/L (280 somaclones or 23% of the
total, corresponding to scores of 0 and 1) compared with those at a TDZ dose of
2 mg/L (246 somaclones or 20%, corresponding to scores of 0 and 1). In banana
cultivation, TDZ is used as a plant regulator to induce somaclonal variation
and generate Grand Naine (Cavendish) banana somaclones resistant to Foc
STR4, as indicated by Rebougas et al. [22]. The authors obtained two resistant
somaclones, corresponding to an average of 1% resistant somaclones. The TDZ
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dose of 1 mg/L used in the study by Rebougas et al. [22] reinforces the results
obtained in this study.

In wheat (Triticum aestivum L.), the technique of somaclonal variation has
been wused to generate somaclones. Wang et al. [25] wused 24-
dichlorophenoxyacetic acid (2,4-D) at a dose of 2.0 mg/L to induce somaclonal
variation. This synthetic auxin is responsible for plant growth and
development. The authors subcultured the seeds for 4 weeks to induce callus
and obtained a somaclone of dwarf wheat, called AS34; they observed that this
new genotype showed positive effects on agronomic characteristics related to
grain yield in F2 populations, especially associated with lower plant height.

Eeckhaut et al. [40] produced somaclones with ornamental characteristics
using TDZ. In this study, the potential of protoplast regeneration to induce
somaclonal variation in Chrysanthemum x morifolium, cultivar Arjuna, was
evaluated. Fifty-four protoplast regenerants were produced and vegetatively
propagated in a medium containing 0.1 mg/L of TDZ. Significant variations
were observed between the regenerants, influencing the number, size, and
weight of the flowers, weight of the leaves and stems, and overall size of the
plants. A reduction in flowering induction time was also observed, up to 10
days earlier in some cases, as well as variations in flower types and colors. In
our study, no morphological changes were observed in the somaclones, such as
changes in leaf color or plant size, at least until three months of plant
development and evaluation. A complete agronomic characterization of the
somaclones will be conducted in subsequent stages of study.

Ferreira et al. [17] analyzed the role of somaclonal variation in plant
breeding, observing that various plant regulators are used to induce
somaclonal variation. Among these regulators, TDZ was remarkable, especially
at doses of 1 and 2 mg/L. Additionally, TDZ was found to cause alterations in
the phenotypic characteristics of various crops, such as changes in leaf and
flower color, plant height, and resistance to pathogens, among others.
Moreover, according to the authors, thousands of plants subjected to TDZ
treatment are required to facilitate the selection of somaclones with desirable
agronomic characteristics, especially genetic resistance to pathogens.

TDZ is a plant regulator that acts as a hormone, triggering various
functions in plant tissues, including the increase in the formation of lateral
buds and development of plants with a more desirable architecture for
agricultural or ornamental production [41]. TDZ has various effects on fruit
crops; for example, it can improve fruit size in kiwi (Actinidia deliciosa
“Hayward”), pear (Pyrus communis L. cv “Spadona” and “Coscia”), and grapes
(Vitis vinifera cv “Simone”) [42-44], and increase yield in pears (P. calleryana cv
“Hosui” and “Packham’s Triumph”) and cucumbers (Cucumis sativa L.) [45,
46]. It has high cytokinin activity in in-vitro cultures, promoting high rates of
multiplication and shoot formation; it is effective in inducing callus and
regenerating plants from plant tissues. TDZ is also commonly used in plant
tissue cultures to promote shoot formation [47-49]; it has an influence on
morphogenesis and rooting efficiency when used in concentrations above
threshold levels and/or for prolonged periods [50, 51].

The concentrations of the plant regulator, together with the subcultures,
cause genetic variations that can result in different phenotypes compared with
the original matrices. Pop et al. [52] induced somaclonal variation in five
grapevine cultivars (Vitis vinifera) using shoots as a source of explants in a
culture medium containing 0.5 mg/L of 1-naphthylacetic acid (NAA) and 0.5
mg/L of TDZ after the 12th subcultivation. They obtained five somaclones of
the cultivar “Merlot” and one somaclone of the varieties “Feteascd Albd” and
“Traminer Roz.” They achieved significant results for the future of wine
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breeding programs. Similarly, Bidabadi et al. [53] investigated the effects of
different concentrations of benzylaminopurine (BAP) and TDZ on somaclonal
variation, based on genetic and phenotypic variability between
micropropagated shoots subcultured six times in the banana cultivars
“Berangan Intan,” “Berangan,” and “Rastali.” The main results showed that
with the highest concentrations of BAP (up to 9.9 mg/L) and TDZ (up to 1.6
mg/L), most shoots showed morphological changes, including undifferentiated
shoots. In our study, TDZ doses of 1 and 2 mg/L, combined with five
subcultures, generated efficient genetic alterations in terms of inducing
resistance to Fusarium wilt.

Regardless of the studied culture, one determining factor for the induction
of somaclonal variation in vitro is the number of subcultures to which the
explant is submitted. Notably, from the fifth subcultivation onward, the
explants can already undergo somaclonal variation [17]. In our study, we
conducted five subcultivations and identified resistant somaclones. Similarly,
Miyao et al. [26] employed five subcultures on lines regenerated from cell
cultures of rice (Oryza sativa L. cv. Nipponbare) and obtained three lines with
resistance to the fungus Magnaporthe oryzae, which causes rice brusone. These
results confirm those of in-vitro variations from the fifth subcultivation cycle
onward.

4.2. Analysis of resistance mechanisms by histological and histochemical evaluations

Somaclones S2, S3, and S7 (C, D, and H) in T1, and S9 and S11 in T2
showed the highest concentrations of phenolic compounds (Figure 2). Some
resistance mechanisms may have been activated in the somaclones selected as
resistant in this study, both pre- and post-formation [54]. Pre-formed
mechanisms include: spines and trichomes, physical structures that hinder
access to pathogens; the cuticle, a waxy layer that covers the epidermis and
prevents the entry of pathogens; thickened cell walls, which reinforce the cell
wall and hinder penetration by pathogens; and accumulation of phenolic
compounds, namely, substances with antimicrobial and antioxidant properties
that are capable of inhibiting the presence of pathogens. In our study, we
observed the presence of phenolic compounds (Figure 2). Post-formed
resistance mechanisms include: the hypersensitivity response or programmed
cell death, wherein cells around the infection site die to contain the spread of
the pathogen; and production of phytoalexins, antimicrobial compounds
produced in response to infection by pathogens [54-56].

We quantified three compounds associated with resistance mechanisms:
phenols, callose, and cellulose. Some plant defense mechanisms are
constitutively present even in the absence of stress stimuli. For example, the
presence of phenolic compounds, on the surface of leaves or in the cell wall, is
a pre-formed mechanism. These compounds can deter herbivores and
pathogens by acting as a physical or chemical barrier. Callose is a post-formed
resistance mechanism as it reinforces the cell wall and blocks the penetration of
pathogens once the plant has detected their presence. Similarly, the deposition
of cellulose in the cell walls around an infection site is a post-formed
mechanism that strengthens the cell structure and prevents the spread of
pathogens [56].

Phenols are substances produced when the plant is infected by the
pathogen and are accumulated in the vascular system to prevent the spread of
infection. This strategy was identified by Rocha et al. [16], who studied the
interaction between Musa sp vs. Fusarium oxysporum {. sp. cubense, with the aim
of quantifying the virulence levels of different isolates when inoculated into
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resistant and susceptible banana cultivars. They observed a higher
concentration of phenolic compounds in the roots of resistant plants. Similarly,
Soares et al. [57] reported greater production and accumulation of phenolic
compounds in cultivars resistant to Pseudocercospora fijiensis, based on
histochemical analyses, which also enabled the identification of the presence of
callose in the leaves of resistant genotypes in greater quantity compared with
that in susceptible cultivars.

Phenolic compounds are associated with defense mechanisms and
responses to adverse environmental conditions and are slightly involved in cell
growth and development [58, 59]. However, there is an association between the
production of phenols and cultivation of embryogenic callus as a reduction in
the activity of cytochrome C and dehydrogenases, such as FADH2/NADH, and
an increase in the concentration of phenolics are observed. Furthermore,
Shirani et al. [60] observed that TDZ promoted greater production of phenolic
compounds when used to promote the proliferation of shoots in a musaceae
tissue culture. Based on the above studies, the resistant somaclones in this
study may have shown a high concentration of phenolic compounds owing to
the presence of TDZ, and not owing to the resistance response to Foc, which
needs to be confirmed in further studies.

Without inducing somaclonal variation, Ncube et al. [61] investigated the
effects of TDZ on the regeneration and production of phenolic compounds of
Merwilla plumbea (Lindl.) plants during the transition from in-vitro to ex-vitro
environments. They highlighted that exposing the plants to 0.45 uM of TDZ
resulted in significantly higher levels of total phenolics in the plants
regenerated in vitro, as well as greater antioxidant activity compared with the
ex-vitro plants. Flow cytometry analysis indicated that the genomic stability of
the regenerated plants was comparable with that of field-grown plants. The
authors concluded that TDZ not only promoted efficient plant regeneration but
also enhanced their antioxidant and phytochemical properties during
adaptation to the ex-vitro environment. These results reinforce our findings,
namely, the resistant somaclones maintained genetic stability compared with
the commercial control, induced by the use of TDZ, and showed an increase in
phenolic compounds ex vitro. However, we did not conduct in-vitro phenolic
compound analyses, which prevents a direct comparison between in-vitro and
ex-vitro results, which must be explored in future studies.

During fluorescence analysis, the presence of callose was observed in both
treatments of the resistant somaclones. This observation suggests that the
somaclones activated signaling pathways capable of detecting the presence of
Foc in the roots through pathogen associated molecular patterns (PAMPs),
which are specific molecules found in various pathogenic microorganisms,
such as bacteria, viruses, fungi, and parasites. Conversely, pattern recognition
receptors (PRRs) are receptors present in cells that recognize these patterns,
initiating an immune response to fight the infection. These processes enable the
production and deposition of callose at the pathogen’s infection sites,
strengthening the cell wall and hindering pentration by the fungus. This
phenomenon, known as PAMP-triggered immunity (PTI), includes certain
responses, such as the accumulation of callose, which may have occurred in the
resistant somaclones in this study, wherein the presence of callose was
observed in greater concentration in somaclones S2 (C), S5 (F), S7 (H), and S9
(K). This indicated that through the action of PAMPs, the presence of Foc in the
roots of the somaclones and activation of this post-formed resistance
mechanism could be detected.

In resistant plants, callose formation is rapidly induced, deposited mainly
at infection points to reinforce the cell walls and prevent penetration by the
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pathogen [62-65]. De Quadros et al. [66] investigated the defense mechanisms
of the root and hypocotyl tissues of the common bean (Phaseolus vulgaris L.)
against Fusarium oxysporum f. sp. phaseoli (Fop). Resistant and susceptible bean
plants were inoculated by dipping their roots in a suspension of conidia. After
inoculation, the authors examined the defense mechanisms of the root and
hypocotyl in detail using microscopic techniques and biochemical assays. They
observed that Fop colonized the epidermis and cortex inter- and intracellularly,
reaching the xylem vessels more quickly in the susceptible genotype.
Inoculation with Fop induced the accumulation of phenolic compounds and
carbohydrates, as well as the deposition of callose inside the xylem vessels,
especially in the resistant genotype.

The third component evaluated in our study, related to post-formed
resistance mechanisms, was the presence of cellulose. When a plant is attacked
by a pathogen, it activates defense responses to protect its tissues, and one of
these responses involves the production of cellulose, namely, a crucial element
of the cell wall. Cellulose strengthens cell walls, hindering the penetration and
spread of the pathogen. Additionally, plants deposit additional layers of
cellulose around the site of infection, creating physical barriers that isolate the
pathogen and prevent its spread. The presence of pathogens also activates
signaling pathways that increase cellulose production, regulating genes related
to its biosynthesis. These mechanisms help plants to resist infection and defend
themselves against pathogens [54, 63, 65].

In this study, we conducted fluorescence analysis to observe the presence
of cellulose in the xylem-conducting vessels in the roots of the resistant
somaclones. The somaclones from T2, especially S8 (J), S9 (K), and S13 (O),
showed greater cellulose deposition compared with the control (Figure 4).
Rocha et al. [16] also detected these compounds in banana cultivars after
inoculation with Foc. During the interaction with Foc 229A isolate, which was
also used in this study, cellulose was observed in the Prata-Ana and Grande
Naine cultivars.

Phytopathogenic fungi produce enzymes that degrade the cell wall, such
as cellulases, facilitating their invasion of host tissues. These enzymes break
down cell wall components, such as wax and the cuticle, enbaling the
penetration and spread of the pathogen [67, 68]. In this context, the resistant
somaclones developed defense mechanisms with cellulose accumulation in the
cell wall, which proved to be efficient against Foc. Thus, the pathogen was
unable to produce enough enzymes to degrade the cellulose in the cell wall of
the hosts owing to the high concentration of this compound in the vascular
tissue of the resistant somaclones (Figure 4).

In the root clarification and staining technique, the absence of pathogen
structures was observed in the resistant somaclones in both treatments with
TDZ, indicating that these genotypes developed resistance mechanisms
preventing the penetration of Foc, such as the action of phenolic compounds,
callose, and cellulose. The presence of chlamydospores was detected in the
tissue of the vascular system of somaclones S3, S5, and S6 in T1, and S8, S9, S10,
and S12 in T2. The analyzed somaclones showed pathogen structures in the
vascular system; however, successful infection by the pathogen was prevented.
This resistance can be attributed to the aforementioned mechanisms or possible
genetic alterations that have not yet been investigated.

These findings indicate that the pathogen was unable to successfully
establish infection in somaclones of T1 and T2 owing to the effectiveness of the
existing defense mechanisms. In somaclone S2, the three defense mechanisms
analyzed in this study were identified: phenolic compounds, callose, and
cellulose. In somaclone S7, phenolic compounds and callose were observed,
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whereas in somaclone S9, phenolic compounds and cellulose were detected.
Somaclone S13 showed the presence of callose and cellulose. The other
somaclones showed only one of the studied defense mechanisms. Notably, by
presenting three different resistance mechanisms, somaclone S2 may be
superior to the others selected in this study as the pathogen will need to
overcome three different obstacles for successful infection.

Post-formed mechanisms of genetic resistance, such as phenolic
compounds, callose, and cellulose, may have been activated by the resistant
plants that contained structures of the pathogen in the root tissue, which did
not enable the spread of infection (Figure 5). Xiao et al. [69], Warman et al. [70],
and Rebougas et al. [22] observed that chlamydospores and microconidia
germinate around the root tip and between the root hairs of banana genotypes,
before penetrating the epidermal cells and moving through the intercellular
elongation zone to start the infection process. Thus, the somaclones that did not
contain Foc spores may have developed resistance mechanisms that did not
enable the entry of the pathogen into the root tissues, which must be verified in
future studies.

4.3. Analysis of the extent of genetic diversity in somaclones using molecular markers
IRAP, REMAP, and ISSR

The molecular markers used in our study (IRAP, REMAP, and ISSR)
were selected to cover different parts of the somaclone genome, enabling the
detection of genetic variations between somaclones and between somaclones
and their parents. IRAP markers help detect retrotransposons, which are DNA
sequences that have the ability to move within an organism's genome, namely,
they are mobile genetic elements that can cause mutations, activation, or
deactivation of genes [71, 72]. ISSR markers are molecular tools used to analyze
genetic polymorphisms. They amplify regions between microsatellites in DNA,
detecting variations in the number of repeats. Owing to their high sensitivity
and reproducibility, ISSR markers are widely applied in genetic diversity
studies, phylogeny, genetic mapping, and plant breeding. Moreover, their
versatility allows them to be used in different species without the need for
prior knowledge of the genome, making them valuable for genetics and
conservation research [73, 74]. REMAP markers combine elements of
retrotransposons and microsatellites to identify polymorphisms in DNA. This
technique is based on the amplification of regions between retrotransposons
and microsatellites, enabling the detection of insertions and deletions that
indicate genetic variations. REMAP markers are useful for genetic diversity
studies, genetic mapping, and plant breeding.

Our results indicated that the resistant somaclones have high genetic
similarity with the Prata Catarina cultivar, from which they were derived. The
array of markers used indicated that the bands/allels patterns were mostly
similar to the commercial cultivar. Thus, we inferred that the somaclones did
not differ agronomically from Prata Catarina in terms of the agronomic
characters, such as bunch weight, number of fruits, or the sensory profile. This
information will be verified in future studies on the commercial potential of
somaclones through field experiments.

Ferreira et al. [17] indicated that the IRAP and REMAP markers are
considered efficient molecular markers for investigating teh genetic variability
in various crops. These markers are based on retrotransposons that are
dispersed throughout the plant genome and can contain thousands of copies,
thus contributing to the size, structure, diversity, and variation of the genome,
which is a factor that can affect gene function [75].
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Muhammad et al. [76] used random amplified polymorphic DNA (RAPD)
markers, which revealed greater polymorphism compared with IRAP markers
when analyzing somaclones derived from the silk subgroup (AAB) banana
cultivar called “Rasthali.” They concluded that somaclonal variation appears to
be derived from multiple indels scattered throughout the genome, as a
response to stress induced by micropropagation. Therefore, for the
comprehensive characterization of somaclonal variants, more than one DNA
marker system must be employed to detect variations in various regions of the
genome, as was used in our study.

Another molecular marker used to identify genetic variations, in addition
to the aforementioned markers, is amplified fragment length polymorphism
(AFLP). This molecular technique is widely used to detect genetic variations
between different DNA samples, combining the digestion of DNA with
restriction enzymes and selective amplification of DNA fragments using
polymerase chain reaction (PCR), enabling the detailed analysis of somaclonal
variation [17]. Munsamy et al. [24] investigated the increased frequency of
somaclonal variants of sugarcane plants (Saccharum spp.) produced in vitro
using the AFLP marker. They identified genetic variations in at least one
sugarcane somaclone that was resistant to brown rust (Puccinia melanocephala).

Today, next-generation sequencing technology is increasingly being used
to study somaclonal variation and genetic variability in plants. Approaches,
including whole-genome sequencing, offer a more detailed view of genetic
changes in somaclones [77]. Therefore, although the traditional methods
discussed in this study are still widely used, whole-genome sequencing
technologies have become more accessible and offer a more comprehensive
and accurate perspective on somaclonal variation. These new technologies will
be employed in our future studies on the selected resistant somaclones.

5. Conclusions

In this study, the application of the plant regulator TDZ proved to be effective
in producing 13 somaclones derived from the cultivar Prata Catarina
(subgroup Prata, AAB), with resistance to Fusarium wilt. The 1-mg/L dose was
more efficient in obtaining somaclones in terms of the number of resistant
plants. Molecular analysis revealed no genetic alterations in the somaclones,
suggesting that their agronomic characteristics remained unchanged compared
with those of the commercial genotype. Results from the histological and
histochemical evaluations corroborate the observed resistance, indicating the
presence of phenolic compounds, callose, and cellulose as possible contributing
mechanisms to this resistance. These findings indicate the presence of post-
formed resistance mechanisms in the resistant somaclones. Our results were
promising, indicating that the induction of somaclonal variation is an effective
and efficient approach for the development of banana cultivars resistant to this
disease, which limits the production of Prata bananas in various producing
regions of Brazil.
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CONCLUSAO GERAL

A revisdo sistematica sobre variacdo somaclonal que realizamos incluiu a analise
de artigos publicados ao longo dos Gltimos 16 anos. Esta revisdo marca a primeira
abordagem sistematica sobre o tema. Nela, exploramos temas relevantes para o0s
programas de melhoramento genético, visando o desenvolvimento de novas variedades
de material vegetal com caracteristicas agronémicas desejaveis em varias areas, como
resisténcia a patdgenos, caracteristicas agrondmicas, ornamentais, medicinais, entre
outros. Foram identificados 4.354 artigos, dos quais 219 foram selecionados de acordo
com os critérios estabelecidos no protocolo e compdem esta reviséo.

Os paises com maior producédo de publicacdes sobre o tema foram o Paquist&o,
China, Egito e Brasil. Diversas espécies foram discutidas, incluindo frutas, gramineas,
cereais, hortalicas, raizes, tubérculos e plantas ornamentais, evidenciando o amplo uso
dessa técnica no melhoramento genético em diferentes paises e para diversas espécies.

Os principais fatores de variagdo somaclonal in vitro incluem o nimero de
subcultivos e os reguladores vegetais, sendo essas informacdes discutidas neste estudo,
0 que pode contribuir para trabalhos que visam induzir varia¢cdo somaclonal em plantas.
Além disso, sdo abordadas informacdes sobre alteracfes morfologicas dos somaclones
gerados em varias culturas e as ferramentas utilizadas para identifica-los.

Foram obtidos resultados promissores na inducdo de variagdo somaclonal em
bananeiras da cultivar Prata Catarina. Selecionamos e discutimos 13 somaclones
resistentes. Além disso, os resultados das avaliacdes histologicas e histoquimicas
comprovaram a ativacdo de mecanismos de resisténcia pos-formados. As analises
moleculares sugeriram que as alteracBes genéticas induzidas pelas doses de TDZ nos
somaclones afetaram apenas o nivel de resisténcia das plantas. Por apresentar trés
diferentes mecanismos de resisténcia, o somaclone S2 pode ser superior aos outros
selecionados neste trabalho, pois o patdgeno precisara superar trés obstaculos distintos
para ter sucesso no processo de infeccdo. Inferimos que os somaclones resistentes
selecionados podem apresentar o mesmo perfil agrondmico e sensorial da cultivar
comercial Prata Catarina. Esses resultados sdo significativos, e podem contribuir para
mitigar os danos causados pelo Foc, nas areas produtoras de banana e impulsionar

avancos nos programas de melhoramento genético.
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