
 
 

 

 

 

 

 

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA 

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA 

 

 
 

 

 

 

 

 

 

MARCELLY SANTANA MASCARENHAS 

 

 

 

 

 

 

 

 

 

USO DA TECNOLOGIA CRISPR/Cas9 NA EDIÇÃO DE 

GENES E VALIDAÇÃO DE VETORES PARA 

TOLERÂNCIA A ESTRESSES BIÓTICOS EM 

BANANEIRA (Musa spp.) 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Feira de Santana, BA 

2024 



 
 

MARCELLY SANTANA MASCARENHAS 

 

 

 

 

 

 

 

 

 

 

 

USO DA TECNOLOGIA CRISPR/Cas9 NA EDIÇÃO DE 

GENES E VALIDAÇÃO DE VETORES PARA 

TOLERÂNCIA A ESTRESSES BIÓTICOS EM 

BANANEIRA (Musa spp.) 

 

 

 

 
Tese apresentada ao Programa de Pós-graduação em 

Biotecnologia, da Universidade Estadual de Feira de Santana 

como requisito parcial para obtenção do título de Doutora em 

Biotecnologia.  

 

Orientador: Prof. Dr. Edson Perito Amorim 

Coorientadora: Dra. Cláudia Fortes Ferreira 

                         Dra. Janay Almeida dos Santos-Serejo 

                         Dr. Tiago Antônio de Oliveira Mendes 

 

 

 

 

 

 

 

 

 

 

 

 

 
Feira de Santana, BA 

2024 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Ficha catalográfica - Biblioteca Central Julieta Carteado - UEFS 

 

Rejane Maria Rosa Ribeiro – Bibliotecária CRB-5/695 

 

Mascarenhas, Marcelly Santana 
M361 Uso da tecnologia CRISPR/Cas9 na edição de genes e validação 

de vetores para tolerância a estresses bióticos em bananeira (Musa 
spp.) /Marcelly Santana Mascarenhas. – 2024. 

77f. : il 
 

  Orientador: Edson Perito Amorim 
Coorientadores: Cláudia Fortes Ferreira, Janay Almeida dos 
Santos-Serejo, Tiago Antônio de Oliveira Mendes. 

 
Tese (doutorado) - Universidade Estadual de Feira de Santana.  
Programa de Pós-Graduação em Biotecnologia, 2024. 

 
1. Melhoramento genético. 2. CRISPR/Cas. 3. Fitoeno 

Desaturase. 4. Musa spp. 5. Revisão sistemática. I. Amorim, 
Edson Perito, orient. II. Ferreira, Cláudia Fortes, coorient. III. 
Santos-Serejo, Janay Almeida dos, coorient. IV. Mendes, Tiago 
Antônio de Oliveira, coorient. V. Universidade Estadual de Feira de 
Santana. Programa de Pós-Graduação em Biotecnologia. VI. Título. 

 
        CDU: 634.773:57.08 



 
 

MARCELLY SANTANA MASCARENHAS 

 
 
 

“USO DA TECNOLOGIA CRISPR-Cas9 NA EDIÇÃO DE GENES E 
VALIDAÇÃO DE VETORES PARA TOLERÂNCIA A ESTRESSES 

BIÓTICOS EM BANANEIRA (Musa spp.)” 

 
Tese apresentada ao Programa de Pós-Graduação em Biotecnologia da Universidade 

Estadual de Feira de Santana, área de concentração em Biotecnologia com ênfase em  

Recursos Naturais da Região Nordeste, como requisito para obtenção do grau de doutor, tendo 

sido aprovada pelos membros signatários abaixo. 

 
 

Feira de Santana, Bahia, 17 de outubro de 
2024. 

 

 
Orientador: Prof. Dr. Edson Perito Amorim 

Embrapa Mandioca e Fruticultura 
 

Membro: Prof. Dr. Rogério Mercês Ferreira Santos 

Universidade Estadual de Feira de Santana 

 
 

Membro: Profª. Drª. Ariana Silva Santos 

Universidade Estadual de Santa Cruz 

 

 
Membro: Profª. Drª. Alessandra Selbach Schnadelbach 

Universidade Federal da Bahia 

 
 

Membro: Profª. Drª. Silvia de Oliveira Dorta 

CIRAD - França 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedico 

A minha mãe, que, com seu amor incondicional, sabedoria e força, foi e sempre será 

minha maior inspiração. 



 
 

AGRADECIMENTOS 

 

Agradeço a Deus por me dar vida e saúde, por me fortalecer e conduzir até aqui, sem Ele 

nada seria possível, a ti toda honra e glória. 

À Universidade Estadual de Feira de Santana (UEFS), ao Programa de Pós-Graduação 

em Biotecnologia e à EMBRAPA Mandioca e Fruticultura.  

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES), pela 

concessão da bolsa (Código de Financiamento 001).  

Ao meu orientador, Dr. Edson Amorim, por todos os ensinamentos, apoio e parceiria ao 

longo desses anos, por toda paciência e tempo dedicados ao trabalho, por ser um 

profissional exemplar, estar sempre disposto a contribuir, a quem admiro e respeito 

profundamente. 

À minha coorientadora Dra. Claudia Fortes por todo conhecimento compartilhado, por 

estar sempre disponível e ser sempre positiva, me apoiando e orientando para que os 

trabalhos fossem conduzidos sempre da melhor forma, pela paciência e dedicação, por 

todo cuidado, a quem sou muito grata e tenho uma enorme adimiração. 

Aos meus coorientadores Dra. Janay Serejo e Dr. Tiago Mendes por suas valiosas 

contribuições, por todo suporte, disponibilidade e apoio.  

À minha mãe, Sandra, pelo amor incondicional, por todo cuidado, apoio, incentivo e 

compreensão, por ser meu exemplo de força e superação. 

À minha irmã Millena, por cada palavra e carinho ofertado. 

Ao meu marido Ricardo, por todo apoio, incentivo e cuidado, pelo companheirismo e 

amor. 

Às amigas: Fernanda, que por anos dividiu a “carga” comigo, tornando o trabalho mais 

leve e prazeroso, muito obrigada por todos os ensinamentos, pelas risadas, apoio e 

amizade. A Anelita, Mileide, Tamyres Patrícia, Wanderley, por todo apoio e incentivo, 

por todo carinho e amizade, como é bom ter vocês na vida.   



 
 

À amiga e analista Andresa por todo o suporte fornecido, por compartilhar seus 

conhencimentos, por confiar em nosso trabalho e ser tão humana, por cada lágrima 

compartilhada (não foram poucas) e acolhida, por sua leveza e por ter sempre um abraço 

a disposição.  

À Luana e Lívia, por todo apoio e trabalho compartilhado, pelo suporte em laboratório de 

biologia molecular na Universidade Federal de Viçosa (UFV), sou muito grata a vocês. 

A todos os amigos e colegas da equipe dos laboratórios de Biologia Molecular e Cultura 

de Tecidos de bananeira Welly, Amanda, Taís, Manoela, Danilo, Karen, Dr. Antônio, 

Honorato, D. Tânia, Maria Luisa e agregados. À Meire por todos os ensinamentos na 

cultura de tecidos, ao pessoal do campo e todos os setores relacionados.  

Obrigada a todos que de alguma maneira contribuiram para a realização deste trabalho, 

muito obrigada. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"Não temas, porque eu sou contigo; não te assombres, porque eu sou o teu Deus; eu te 

fortaleço, e te ajudo, e te sustento com a destra da minha justiça." 

  Isaias 41:10 



 
 

RESUMO 

 

 

As diversas doenças causadas por fungos, oomicetos, bactérias e patógenos virais, 

comprometem o desenvolvimento das plantas afetando sua produtividade final. Para 

superar esses desafios, os programas de melhoramento buscam métodos e técnicas para 

aprimorar o desempenho das culturas em cenários de estresses. A edição gênica, via 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), surge como uma 

ferramenta versátil com potencial para desenvolver culturas tolerantes aos múltiplos 

estresses. O primeiro capítulo deste trabalho objetivou desenvolver uma revisão 

sistemática da literatura gerada nos últimos doze anos sobre o uso da tecnologia CRISPR 

na edição de genes para tolerância a estresses bióticos. Buscou-se avaliar artigos 

depositados em diferentes bases eletrônicas, usando strings de busca e critérios de 

inclusão e exclusão predefinidos. Esta revisão demonstrou que o sistema CRISPR/Cas é 

aplicado em diversas espécies vegetais a fim de promover tolerância aos principais 

estresses bióticos. A maioria dos estudos foram desenvolvidos no continente Asiático, 

especificamente na China. A enzima Cas9 é usada na maioria dos artigos, mas enzimas 

como Cas12 (Cpf1) e Cas13 também podem ser usadas como uma ferramenta adicional 

para edição de genomas. A revisão também revelou vários genes editados por CRISPR e 

que as respostas das plantas aos fatores de estresse são mediadas por muitas vias de 

sinalização complexas. Além disso, a qualidade dos artigos inseridos nesta revisão foi 

atestada por meio de uma análise de risco de viés. No segundo capítulo, foram 

desenvolvidos duas construções/cassetes como produtos biotecnológicos contendo ou não 

promotor tecido-específico de raiz de bananeira, além de utilizar a tecnologia 

CRISPR/Cas9 para o knockout do gene PDS (Fitoeno desaturase) na cultivar Prata-Anã. 

Para isso, dois RNAs guias (gRNA) foram desenhados e dois vetores/construções foram 

confeccionados, suas partes foram isoladas, purificadas e transformadas em 

Agrobacterium tumefaciens. Células embriogênicas de bananeira Prata-anã foram 

utilizadas como explantes para transformação via A. tumefaciens. A partir desses métodos 

foi possível desenvolver um protocolo para construção e validação de vetores 

CRISPR/Cas para knockout de genes. 

 

Palavras-chave: Melhoramento genético, CRISPR/Cas, Revisão sistemática, Fitoeno 

desaturase, banana. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

ABSTRACT 

 

 

The various diseases caused by fungi, oomycetes, bacteria and viral pathogens 

compromise the development of plants affecting their final yield. To overcome these 

challenges, breeding programs seek methods and techniques to improve crop performance 

under stress scenarios. Gene editing via CRISPR (Clustered Regularly Interspaced Short 

Palindromic Repeats) appears as a versatile tool with the potential to develop crops 

tolerant to multiple stresses. The first chapter of this work aimed to develop a systematic 

review of the literature generated in the last twelve years on the use of CRISPR 

technology in gene editing for tolerance to biotic stresses. We sought to evaluate articles 

deposited in different electronic databases, using search strings and predefined inclusion 

and exclusion criteria. This review demonstrated that the CRISPR/Cas system is applied 

to several plant species in order to promote tolerance to the main biotic stresses. Most 

studies were developed in the Asian continent, specifically in China. The Cas9 enzyme is 

used in most articles, enzymes such as Cas12 (Cpf1) and Cas13 can also be used as an 

additional tool for genome editing. The review also reveals several genes edited by 

CRISPR and that plant responses to stress factors are mediated by many complex 

signaling pathways. Furthermore, the quality of the articles included in this review was 

confirmed through a risk of bias analysis.  In the second chapter, it was proposed to 

develop at least one construct/cassette as a biotechnological product containing or not a 

tissue-specific promoter from banana root, in addition to using CRISPR/Cas9 technology 

to knockout the PDS (Phytoene desaturase) gene in the Prata-Anã cultivar. For this, two 

guide RNAs (gRNA) were designed and two vectors/constructs were made, their parts 

were isolated, purified and transformed into Agrobacterium tumefaciens. Embryogenic 

cells of Prata-anã banana were used as explants for transformation via A. tumefaciens. 

From these methods it was possible to develop a protocol for construction and validation 

of CRISPR/Cas vectors for gene knockout. 

Keywords: Genetic breeding, CRISPR-Cas, Systematic Review, Phytoene desaturase, 

banana. 
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INTRODUÇÃO GERAL 

A alimentação é a base da sobrevivência humana, a produção agrícola aliada a segurança 

alimentar desempenham um papel crucial no futuro da humanidade. Segundo projeções da FAO 

(2024), a população mundial tende a atingir 9,3 bilhões de pessoas em meados do século XXI, 

exigindo um aumento significativo na produção agrícola para suprir à crescente demanda por 

alimentos (MA e LIANG, 2021). O crescimento populacional, condições climáticas extremas, 

diminuição da disponibilidade de água e terras agrícolas, doenças e pragas em plantas, têm sido 

consideradas as principais limitações para a produção de alimentos (SINGH et al., 2022). 

Nas últimas décadas, técnicas do Melhoramento Genético Vegetal, que incluem 

cruzamentos, mutações e seleção assistida por marcadores, tem sido usadas para aumentar o 

desempenho de plantas em cenários de estresse. Essas abordagens tradicionais ainda são úteis para 

desenvolver variedades resilientes a estresses bióticos e abióticos (SHELAKE et al., 2019). No 

entanto, os métodos convencionais de Melhoramento Genético são demorados e muitas vezes não 

produzem os resultados desejados (VARSHNEY et al., 2021).  

Avanços na Biotecnologia como a tecnologia da transgenia e a interferência de RNA foram 

utilizadas para produzir variedades geneticamente modificadas (GM) com características 

aprimoradas, tais como resistência a pragas e insetos, tolerância a herbicidas, estresse abiótico ou 

resistência a doenças e biofortificação (SINGH et al., 2009; KUMAR et al., 2020). No entanto, as 

variedades GM estão sujeitas a obstáculos regulatórios e com aplicações limitadas (AHMAD et al., 

2021). No Brasil, segundo a Comissão Técnica Nacional de Biossegurança (CTNBio) produtos 

gerados por mutagênese dirigida podem não ser considerados transgênicos se não houver inserção 

de DNA exógeno permanente no organismo final (BRASIL, 2018). 

A recente disponibilidade de ferramentas de edição oferece ampla oportunidade para 

introduzir modificações direcionadas no genoma de forma eficiente para estudar os aspectos 

funcionais de vários componentes do genoma em diversas plantas e oferece caminhos potenciais 

para o melhoramento de culturas tolerantes ao estresse biótico (JAIN, 2015). 

As ferramentas de edição de genoma fornecem um método para introduzir mutação 

direcionada, inserção/deleção (indel) e modificação de sequência precisa usando nucleases 

personalizadas em uma ampla variedade de organismos. Zinc Finger Nucleases (ZFNs), 

Transcriptional Activator-Like Effector Nucleases (TALENs) e Clustered Regularly Interspaced 

Short Palindromic Repeats (CRISPR)-Cas (CRISPR-associated nuclease), são as ferramentas de 

edição de genoma mais comumente usadas (AHMAR et al., 2020; BHUYAN et al., 2023).  

De forma geral, essas nucleases Cas específicas de sequência causam quebras de fita dupla 
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(DSBs) no loco/locos genômico alvo, que é/são reparados pelas vias de reparo intracelular; 

classificadas em junção de extremidade não homóloga (NHEJ) ou reparo dirigido por homologia 

(HDR). NHEJ leva à introdução de indels e HDR pode ser usado para introduzir mutações pontuais 

específicas ou inserção de sequências desejadas (como tags ou novos domínios) por meio de 

recombinação (JAIN, 2015; CHENNAKESAVULU et al., 2022; HAMDAN et al., 2022).  

O CRISPR/Cas realiza o processo de reconhecimento através da complementação de bases 

entre o RNA guia e a sequência alvo, e a seleção do sítio alvo só precisa estar em conformidade 

com os requisitos do motivo adjacente ao protoespaçador (PAM) de diferentes sistemas 

(DEBBARMA et al., 2019). Comparado com ZFNs e TALENs, o sistema CRISPR/Cas é simples, 

flexível, estável e eficiente. Esses recursos permitiram que o CRISPR/Cas substituísse rapidamente 

o ZFN e o TALEN como uma das principais técnicas de edição de genoma (LI et al., 2022). 

A tecnologia CRISPR teve origem na adaptação de um mecanismo natural de defesa de 

bactérias e archaeas contra bacteriófagos e plasmídeos (HILLE et al., 2018). A técnica foi otimizada 

experimentalmente, sendo necessários apenas dois componentes principais para seu funcionamento: 

um RNA guia (gRNA) e uma nuclease Cas (JINEK et al. 2012). O gRNA direciona a enzima Cas 

que, por sua vez, cliva um alvo específico no DNA. A quebra da fita dupla de DNA desencadeia um 

mecanismo natural de reparo celular, resultando na edição genômica propriamente dita 

(PAWELCZAKet al., 2018). 

O sistema de vetores que transportam genes também utilizam promotores para regular a 

expressão dos componentes CRISPR/Cas. O promotor constitutivo CaMV 35S, oriundo do vírus do 

mosaico da couve-flor (Cauliflower mosaic virus - CaMV) é muito utilizado em plantas uma vez 

que garante a expressão contínua de genes que regulam todos os tipos de células (PRAMANIK et 

al., 2021; KIM et al., 2024). Promotores tecido-específicos também podem ser utilizados e garantem 

a especificidade no tecido alvo ou em momentos do desenvolvimento da planta tendo uma regulação 

mais precisa da expressão, reduzindo as chances de mutações fora do alvo e o comprometimento de 

outros tecidos (XUN et al., 2021; RAHMAN et al., 2022). 

Devido à simplicidade de programação, o sistema CRISPR/Cas vem sendo utilizado em 

plantas desde 2013, com o objetivo de introduzir mutações principalmente em genes que resultassem 

em um fenótipo distinto e imediatamente reconhecível, como o gene da Fitoeno Desaturase (PDS), 

para testar e otimizar a eficácia da técnica em diversas culturas (LI et al., 2013; DUTT et al., 2020; 

SIDDAPPA et al., 2023; THAKUR e MERU, 2023; PHAD et al., 2024). Outros estudos também 

foram realizados para promover a ativação, repressão e/ou nocaute de genes, e para alterar 

modificações epigenéticas relacionadas a diferentes estresses bióticos em várias culturas, como 

tomate (LI et al., 2023; LI et al., 2024; ZHANG et al., 2024), banana (TRIPATHI et al., 2019), arroz 
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(ZHANG et al., 2023; KIM et al., 2024), milho (GUO et al., 2022), soja (YU et al., 2022) e outras. 

A bananeira (Musa spp.), incluindo os plátanos, é uma das principais culturas alimentares 

básicas cultivadas que alimenta mais de 500 milhões de pessoas em países tropicais e subtropicais 

(FAOSTAT, 2024). A cultura é afetada por vários fatores, especificamente estresses bióticos e 

abióticos (NASCIMENTO et al., 2020; ROCHA et al., 2021; SOARES et al., 2021). O 

desenvolvimento de variedades melhoradas de bananeira usando Melhoramento Genético 

convencional é um desafio devido à baixa variabilidade genética no germoplasma de Musa, 

diferentes poliploidias, meiose desbanlanceada, ciclo de produção longo e esterilidade da maioria 

das cultivares comumente cultivadas pelos agricultores (SILVA et al., 2001). A tecnologia CRISPR 

surge como uma ferramenta muito eficaz, que permite a transferência de características úteis de 

diferentes espécies ou entre uma mesma espécie, contornando os gargalos naturais do melhoramento 

e sendo aplicável no melhoramento da bananeira (TRIPATHI et al., 2019). 

A edição de genoma por meio da tecnologia CRISPR em culturas propagadas 

vegetativamente como a bananeira foi relatada recentemente, tendo como alvo mutações no gene 

PDS (KAUR et al., 2018; NAIM et al., 2018; NTUI et al., 2020). No entanto, cabe ressaltar que no 

Brasil ainda não foram relatados estudos com CRISPR em bananeira. Sendo assim, pretende-se 

utilizar esse sistema como um estudo de caso para knockout do gene PDS e em seguida editar genes 

de resistência a fatores bióticos/abióticos na cultivar mais utilizada pelos agricultores brasileiros, a 

Prata-Anã, como alvo principal para transformação/edição. Uma vez que quase 70 % da variedade 

de banana plantada no Brasil é do tipo Prata e levando-se em consideração que esta variedade é 

suscetível à principal ameaça à bananicultura, a murcha de Fusarium, a necessidade de medidas 

imediatas para contornar este cenário é iminente. 

Portanto, esse trabalho tem por objetivos: i) realizar uma revisão sistemática da literatura 

publicada nos últimos doze anos sobre o uso da tecnologia CRISPR na edição de genes para 

resistência a estresses bióticos em plantas; ii) delinear um protocolo de construção de vetores para 

uso na técnica de CRISPR-Cas9 no estudo de caso com o knockout do gene PDS em bananeira da 

variedade Prata-Anã. Esse estudo trará contribuições significativas para o desenvolvimento de 

cultivares de bananeira resistentes/tolerantes a estresses bióticos/abióticos utilizando a tecnologia 

CRISPR e servirá de base para a edição de novos genes em outras variedades de bananeira de 

interesse. 
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Abstract: The objective of this systematic review (SR) was to select studies on the use of gene editing 

by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles 

deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR 

demonstrates that countries such as China and the United States of America stand out in studies with 

CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. 

The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and 

Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant 

responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in 

most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the 

articles included in this SR was validated by a risk of bias analysis. The information collected in this SR 

helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and 

pests to understand the mechanisms involved in most host–pathogen relationships. This SR shows that 

the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful 

information for plant breeding programs. 

Keywords: biotic stress; CRISPR/Cas; plant diseases; phytopathogens; pests; plant genetic improvement 

 

1. Introduction 

Biotic stresses caused by pests and pathogens such as viruses, bacteria, fungi, oomycetes, 

nematodes, and insects are largely responsible for low productivity in various crops [1]. In 

addition, the continuous increase in several new pest species makes the control of these 

pathogens challenging [2]. Microorganisms have specific characteristics and are classified into 

groups. Biotrophic microorganisms depend on the living plant to feed and complete their life 

cycle; necrotrophs, during their feeding habit, kill the host plant, and hemibiotrophs initially 

depend on the living plant (behaving like biotrophs) in order to survive and complete their cycle 

with a necrotrophic phase; where the host is degraded [3,4].  

The plant and the pathogen are intertwined in a battle of recognition and evasion where a 

multilayered defense system, including pathogen-associated molecular pattern (PAMP)-

triggered immunity (PTI) and effector-triggered immunity (ETI), has evolved in plants to fight 

invading pathogens for survival [5]. In general, PTI uses pattern recognition receptors to
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monitor PAMPs on the cell surface. Meanwhile, ETI relies on leucine-rich repeat repeat receptors 
with a nucleotide-binding domain to recognize pathogen effectors inside the cell [6–8]. 

Thus, understanding the molecular mechanisms of pathogen–host interactions, espe- 
cially the identification of key targets related to defense responses in plants, would offer a 

great opportunity to design broad-spectrum and durable resistance in various crops [5,9,10]. 

Hence, plant breeding programs are looking for effective and long-lasting techniques to 
improve crops. However, some challenges, such as the complex inheritance of the vast  

majority of agronomic traits and the strong genotype–environment interaction, are still 
challenging [11]. 

Currently, three types of genome editing tools are widely used by researchers, in- 
cluding zinc finger nuclease (ZFN) [12], transcription activator-like effector nuclease 

(TALEN) [13], and CRISPR-clustered/associated regularly interspaced short palindromic 
repeats (CRISPR/Cas) [14]. ZFN and TALEN have not been widely used due to high costs 

and failures. The CRISPR/Cas system (which includes Cas9, Cas12, and Cas13) from a 

prokaryotic organism has transformed the field of gene editing with high efficiency and 
easy handling and application. Compared to the previous two generations of genome 

editing techniques, the CRISPR/Cas system is flexible, simple, stable, and easy to transform. 
These resources allowed for ZFN and TALEN to be replaced by CRISPR/Cas, which has 

become one of the main genome editing techniques. 

CRISPR is composed of CRISPR RNA (crRNA) (transcribed from the spacer sequences) 
and transactivating crRNA, or single chimeric guide RNA (sgRNA) (formed by the fusion 
of crRNA and tracrRNA) for targeting and the specificity of targeting [14,15]. The Cas9 

protein-RNA complex (from Streptococcus pyogenes) is formed by the combinations of the 

crRNA spacer to a target sequence close to an adjacent motif of the proto-spacer (PAM— 
3 base pair (bp) motifs essential for spacer acquisition and target cleavage) [15–17]. 

Due to its ease of execution, the CRISPR/Cas system has become the tool of choice 
for gene editing in any species of interest. By generating a double-strand break (DSB) at 
the desired site by the Cas-gRNA complex, the host–cell repairs the DNA lesion via the 

non-homologous end joining (NHEJ) pathway, resulting in short insertions or deletions, 
consequently leading to gene knockouts. Another form of repair is the homology-directed 

repair (HDR) pathway, which is more precise and has a lower probability of error [18,19]. 
In plants, the system has been used to knock out all members or a single member of a 

multigenic family [20] and even several unrelated genes [21], with the NHEJ pathway being 
the most reported [22]. 

Several studies have been published to demonstrate the different genes that positively 
or negatively regulate resistance to various pests and pathogens in model plants and diverse 
crops, such as Arabidopsis thaliana, where genes such as ZAR1, UGT71C3, and miR398b have 

been studied [23–25], in rice, SWEET14, eIF4G, and PRAF2 [26–28], in maize, ZmACD6, 

Zmksl2, and JAZ15 [29–31], in tomato, SlWRKY16, SlWAT1, and SlDMR6 [32–34], and in 

soybean, Rfg1, Rpp1, and GmLMM1 [35–37]. 
In addition, CRISPR technology has evolved rapidly and has shown great potential for 

plant biology, especially with regard to CRISPR/Cas9 variants, such as CRISPR/Cas12 and 

CRISPR/Cas13, which offer better specificity for DNA and RNA, respectively. For precise 
changes in a single base, without causing double-strand breaks, reducing off-target mutations, 

base editing methods have been implemented [38,39]. Other improved delivery tools, such as 
the use of nanoparticles and viral vectors, allow for the efficient introduction of the CRISPR 

system into plant cells and the delivery of RNP (ribonucleoprotein) complexes, rather than 

DNA plasmids, is being used to improve efficiency and reduce off-target effects [40]. Other 
advanced techniques allow for the simultaneous editing of multiple sites in the genome, 

making it easier to modify multiple traits at the same time, and systems such as Prime 
Editing and CRISPR 3.0 are emerging, allowing for precise insertions and deletions without 

the need for DNA breaks [38,39,41]. 
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Thus, off-target effects have been significantly reduced due to improvements in the 
specificity of the CRISPR/Cas system. In addition, these data facilitate reliability and safety, 

allowing for regulatory approval, coupled with strategies such as temporary editing, where 
CRISPR machinery is rapidly degraded after editing, as well aa the ability to edit multiple 

genes simultaneously, which facilitates the engineering of complex traits in plants, such as 
disease resistance and nutritional trait improvements [39–42]. 

In order to systematically gather and review current research on the use of CRISPR/Cas 

technology in gene editing for biotic stress tolerance, this study presents a systematic re- view 
(SR) of articles published in the last twelve years. It also aims to contribute to the SR 

previously carried out on the use of CRISPR/Cas technology in gene editing for tolerance 
to abiotic stresses [22]. Here, we describe how the technique has been applied to pest and 

pathogen resistance studies and the locations and crops, among other data, for which it is  
possible to detect the current research trend on the subject and its impact on crops. 

1. Materials and Methods 

To carry out this SR, the State of the Art through Systematic Review (StArt) software 
(version 3.0.3 Beta) was used, developed, and made available by the Software Engineering 

Research Laboratory of the Federal University of São Carlos, at https://www.lapes.ufscar. 

br/resources/tools-1/start-1, accessed on 15 August 2023. 

The review was prepared following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis (PRISMA) guidelines [43], structured in a set of evidence-based 

items that help authors report a wide range of systematic reviews and meta-analyses and 
can be used in plant, animal, and health intervention areas. A PRISMA checklist was drawn up 

to minimize bias in this SR, available at https://doi.org/10.5281/zenodo.13869284 
(accessed on 29 September 2024). The SR process using StArt occurred in three stages: 

planning, execution, and summarization. 

1.1. Planning 

In order to plan the SR, a protocol was developed, available at https://doi.org/10.528 

1/zenodo.13371943 (accessed on 26 August 2024), which includes a description of the SR, 

the research objectives, the main/guiding question, the research questions (Table 1), the 
search string, the source mechanism, the inclusion and exclusion criteria, and the definition 

of the types of study. The question guiding the SR was based on the Population Intervention 
Comparison Results strategy [44] (Table 1). Thus, this SR aims to answer the following 

research question: how has CRISPR/Cas technology been used in gene editing in plants 
for biotic stress tolerance over the last twelve years? 

 
Table 1. Description of the PICOS strategy used to develop the RS research questions on the use of 

CRISPR/Cas technology to edit tolerance genes/resistance to biotic stresses from studies published 

in the last 12 years. 

                                                         Description Abbreviation Components of the Question 
 

Population P Agricultural varieties under biotic stresses 
Gene editing in plants using CRISPR/Cas 
technology for disease resistance 

Comparison C Plant breeding methods 
Editing genes that confer resistance to biotic 
stresses in plants 

Study type S Scientific articles and literature reviews 

Outcome O 

https://www.lapes.ufscar.br/resources/tools-1/start-1
https://www.lapes.ufscar.br/resources/tools-1/start-1
https://doi.org/10.5281/zenodo.13869284
https://doi.org/10.5281/zenodo.13371943
https://doi.org/10.5281/zenodo.13371943
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After drafting the main research questions, secondary questions were elaborated 
(Table 2). 

 
Table 2. Guiding questions for this SR on the use of CRISPR/Cas technology to edit tolerance 

genes/resistance to biotic stresses from studies published in the last 12 years. 

Research Questions 
 

1. In which country was the study performed? 
2. What culture is the article about? 
3. Which biotic agent is addressed in the study? 
4. Which genes are reportedly associated with disease and pest resistance in plants? 
5. Which nuclease is used in conjunction with the CRISPR tool? 
6. What methodology is used to use CRISPR? 
7. What method is used to prove the effectiveness of the tool? 
8. What techniques/tools are associated with CRISPR/Cas9? 
9. What transformation method was used? 
10. Which explant was used to transform the plants? 
11. What are the main vectors used to express Cas9 and/or gRNA in plants? 
12. Were any unusual phenotypic characteristics observed in the plants after genetic 
transformation? Which ones? 
13. What is the characteristic obtained after mutating the plant? 

 

1.2. Execution 

Searches were performed in different electronic databases such as Pub Med Central, 

Springer, Scopus, Web of Science and sites such as Google Scholar and CAPES Periodicals 
Portal. For the Google Scholar, Springer, PubMed Central, CAPES Periodicals, Web of 

Science and Scopus databases, the following keywords were used: (“CRISPR/Cas9” OR  
“CRISPR-Cas9” OR “CRISPR-Cas in plants”) AND (“plant resistance” OR “plant disease 

resistance”) AND (“plant disease” OR “biotic factors” OR “disease resistance” OR “plant  

pathogens” OR “pests” OR “plant parasite”). 
For the Web of Science and Scopus databases, another search string was also used, with 

the following keywords: (“CRISPR” OR “CRISPR/Cas9” OR “CRISPR-Cas9” OR “CRISPR- 
Cas in plants”) AND (“biotic factors” OR “pathogen resistance” OR “phytopathogen 

resistance” OR “plant disease resistance” OR “disease resistance” OR “plant resistance” OR 
“pest resistance” OR “parasite resistance”), seeking to include as many studies as possible. 

The Boolean connectives “AND” and “OR” were used to differentiate search terms  

and group synonymous terms, respectively. The search results in each database were 
imported into the BIBTEX, MEDLINE, or RIS formats, compatible with the StArt software. 

The bibliographic survey was performed from January 2013 to July 2024. 
To select the articles, the title, abstract, and keywords were analyzed. Articles that 

met the terms of the search sequence and did not deviate from the proposed theme were 

accepted and submitted to the extraction stage. At this stage, only articles that answered 
the research questions (Table 2) previously established in the SR protocol were accepted as 

an inclusion criterion. Exclusion criteria were also used to extract the following articles: 
theses, dissertations, manuals, book chapters, review articles, papers not written in English, 

papers without a clear contribution, papers published prior to 2013, or papers that were 
off-topic. 

1.3. Data Summarization 

The data obtained from the scientific articles was summarized in tables, graphs, 
word clouds, and bibliometric maps. The graphs were constructed using the R version 

4.4.1 statistical environment [45], using the ggplot2, reshape2, and ggpubr packages. The 

bibliometric analyses were performed according to the metadata of the selected articles 
using the VOSviewer_1.6.17 program [46] to verify the networks of interactions between 

keywords and between authors and co-citations. Word clouds containing the journals used 
to publish the articles, genes edited, tools, and software used to support the CRISPR/Cas 
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tool over the last twelve years were generated online and free of charge (https://www. 
wordclouds.com/, accessed on 18 November 2023), based on the frequency of the data. 

1.4. Risk of Bias Analysis 

To assess the risk of bias, the adapted Cochrane Collaboration Tool [47] was used. The 
methodological quality was analyzed by three authors (MSM, FdSN, and AdJR), and the 

articles selected in the extraction stage were subjected to four questions (Table 3) in order to 

further reduce data bias. These are essential questions that confirm whether editing using 
CRISPR/Cas was effective, reaching the target site or not. 

 
Table 3. Questions to evaluate the methodological quality of the articles included in the SR on the use 

of CRISPR/Cas technology to edit tolerance genes/resistance to biotic stresses from studies published 

in the last 12 years. 

  Risk of Bias 
 

1. Has off-target analysis been performed? 
2. Has the pathogen been inoculated? 
3. Has phenotypic analysis been performed after mutation in the plant? 
4. Does the article answer at least 50% of the research questions? 

 

Systematic errors in scientific studies that cause distortions in the results can happen; 

it is complex to state whether a study is biased or not, but systematic errors in scientific 

studies can be estimated and minimized through a careful evaluation of its methodological 
quality. Rigorous practices such as protocol development, the use of PICOS strategy, PRISMA 

checklist, and the others described above, significantly reduce the risks of bias. 
The risk of bias can be classified as low, moderate, or high when the study presents 

negative responses (“no”) of up to 25%, between 25 and 75%, and greater than 75%, 

respectively. 

3. Results 

3.1. Bibliographical Survey 

Initially, 9513 studies related to the proposed topic were identified from the search 

strings in the selected electronic databases, which are widely used in plants. Google Scholar 
showed 5880 studies, Pub Med Central showed 1421, CAPES Periodicals Portal showed 

509, Scopus showed 819, Web of Science showed 574, and Springer, 310. Although the Web 
of Science and Scopus databases use two search strings, Google Scholar contributed 61.8% 

of the articles submitted, which is justified by its broad search spectrum. From this total, 376 
were detected as duplicates by the StArt software. 

After analyzing the title, abstract, and keywords, 7623 studies were rejected and 734 
were submitted to the extraction stage. The texts were read in full, resulting in 296 accepted 
articles (Figure 1). These selected articles met the inclusion/exclusion criteria because they 

are related to the theme of this SR, which aimed to include as many studies as possible on 
the use of CRISPR/Cas technology in the editing of tolerance/resistance genes to biotic  

stresses in the last 12 years; then, the information was deposited in the Supplementary 
Materials (Table S1) for consultation. 

https://www.wordclouds.com/
https://www.wordclouds.com/
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Figure 1. A PRISMA flow diagram with the respective stages of the process of selecting studies for 

inclusion/exclusion in the systematic review of the CRISPR/Cas technology used to edit genes for 

tolerance/resistance to biotic stress in plants according to the databases [43]. 

The studies evaluated covered the period from January 2013 to July 2024, with 2021 
considered the year with the highest number of publications as to CRISPR/Cas technology 

in the editing of genes related to resistance to biotic stressors, contributing 21.6% of the 

articles. The other years had 16.6% (2022), 16.2% (2020), 11.5% (2023), 10.5 (2024), 9.8% 
(2019), 7.4% (2018), 3.7% (2017); for the years 2016, 2015, 2014 and 2013, less than 2% 

were obtained. 
Considering the frequency of authors and all the keywords in the articles selected in 

the extraction phase, bibliometric maps were developed to represent the co-occurrence 
of these words (Figure 2). The size of the circles represents the number of times these 

words were repeated; the larger the circle, the more times the author and journal were cited. 
Colors indicate different groups of authors and keywords and the thickness of the lines the 

correlation between these words. The thicker the line, the higher the occurrence of the term. 
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Figure 2. Bibliometric indicators of the collaboration network between authors and keywords of  

the selected articles on CRISPR/Cas technology and biotic factors. (A) Collaborators who have 

published the most on CRISPR/Cas and biotic stresses in the last 12 years. (B) Keywords of the 

selected articles on CRISPR/Cas technology used for gene editing of tolerance/resistance to biotic 

stresses in plants during the extraction phase of this systematic review. Different colors for each circle 

indicate collaboration between groups. 
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Twenty clusters were formed and identified using different colors, according to the 
degree of similarity between the authors’ works (Figure 2A). Authors such as Yan Li, Jing 

Fan, Long Wang, Yuese Ning, Yi Li, Chao Yang, Liang Guo Wang, Qian Zhang, Jianping Chen, 
and Jing Wang are responsible for a large bibliographic contribution. These data 

demonstrate a trend in centralized research related to Chinese authors with not much  
exchange of information between Chinese researchers and those from the rest of the world. 

The links or distances infer the correlation between these authors and their collaboration 
on other works. Some small grouped but isolated nodes can be observed, but they show 

minimal contribution to the studies performed by the authors included in these groups. 

For the keywords, approximately 92 nodes and 12 clusters were observed, which 
defined the main research themes in this area. The most relevant groups according to the 

size of each circle refer, in order of relevance, to the following words: disease resistance, 
genetics, CRISPR/Cas9, gene editing, and genome editing. These words form core groups 

associated with several other terms of collaboration with a theme that constitutes the 

smaller groups formed, for example, by the terms vectors, crop breeding and regulation of 
gene expression. Words such as Cas12, RNAi, bacterial resistance, and genomic sequencing 

appear in isolation, which indicates lower frequency and low correlation with other studies 
(Figure 2B). 

3.2. Plant of Origin and Plant Cultures Edited Using CRISPR/Cas Technology 

Of the 296 research papers, 158 (59.8%) originated in China, 30 (11.4%) in the United 

States of America (USA), 12 (4.5%) in Germany, 7 (2.7%) in South Korea, 5 (1.9%) in Canada 
and Pakistan, 4 (1.5%) in Spain and Saudi Arabia, 3 (1.1%) in India, Israel, Japan, and the 

Netherlands, and 2 (0.8%) in Australia, the Philippines, Sweden and the United Kingdom. 
The other countries only had one article submitted, which represents just 0.4% of the 

publications on the subject (Figure 3). 
 

 
Figure 3. Frequency of articles according to country of publication and crop edited by CRISPR/Cas 

technology for plant disease tolerance/resistance. More than one plant species per article was 

considered in calculating the frequency. 
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China and the USA are the countries that produce and disseminate the most scientific 
knowledge on the subject. However, all continents, except for Antarctica, have contributed to 
this area of research. The articles identified 28 plant species used for gene editing related to 
resistance to biotic factors. Overall, the types of crops most edited by the CRISPR technique 
include cereals, grains and agricultural commodities, with 48% of the studies represented 

mainly by rice, followed by studies with model plants, represented mainly by Arabidopsis. 

Other studies have included vegetables (21%), fruits (5%), tubers (2%) and trees (1%) 
(Figure 3). 

Rice (Oryza sativa) was the most studied crop, present in 36.5% (109) of the studies, 

followed by tomato (Solanum lycopersicum) with 16% (48), Arabidopsis thaliana with 15% (45), 

wild tobacco (Nicotiana benthamiana) with 7.2% (22), soybean (Glycine max) with 3.8% (12), 

wheat (Triticum aestivum), tobacco (Nicotiana tabacum), and corn (Zea mays), with 2% (6), 

rapeseed (Brassica napus) with 1.7% (5), and grape (Vitis vinifera L.), basil (Ocimum basilicum), and 

cotton (Gossypium hirsutum) with 1.4% (4). The other species had a frequency of less than 
1% of the studies (Figure 3). 

3.3. Biotic Stresses in Plants 

The biotic agents cited in the literature were bacteria, fungi, viruses, oomycetes, insects, 
and nematodes, accounting for 51.8, 28.3, 10.5, 5.7, 2.7, and 1%, respectively. The genera 
Xanthomonas (75) and Pseudomonas (41) account for 92% of the studies on bacteria. For fungi, the 

most studied genera were Magnaporthe (54), Botrytes (19), Fusarium (15), Sclerotinia (7), and 

Verticillium (6) (Figure 4). 
 

Figure 4. The most-studied biotic agents (bacteria, insects, oomycetes, nematodes, fungi, and viruses) 

in the last twelve years for resistance/tolerance to plant diseases using CRISPR/Cas technology.  

More than one biotic agent per article was considered in calculating frequency. 

The most-cited viruses were cucumber mosaic virus (CMV) (8), cotton leaf curl virus 
(CLCuVs) (6), rice streak virus (RSV), rice black-streaked dwarf virus (RBSDV) (4), tomato 
yellow leaf curl virus (TYLCV) (3), and tobacco mosaic virus (TMV) (3). The oomycete 
Phytophthora (14), followed by Hyaloperonospora (8) and Peronospora (4), were the most 

covered. The insect genera Helicoverpa (4), Nilaparvata (3), Spodoptera (2), Sogatella (1), 

Rhopalosiphum (1), Bemisia (1), and Aphidoidea (1), and the nematode genera Meloidogyne (4) 

and Heterodera (1), were also observed in the studies (Figure 4). 

As a result, the diseases most frequently covered were bacterial leaf blight (BLB), 
bacterial leaf streak (BLS) in rice, and bacterial spot in tomatoes. For fungi, brusone in rice, 

gray mold in tomatoes, and Fusarium wilt in various crops, among other diseases, were 
the most commonly observed (Figure 4). 
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3.4. Types of Explants 

The explants used for plant transformation via CRISPR/Cas varied according to the plant 

species. Callus, cells, cotyledons, embryos, epicotyl, hypocotyl, anthers, inflorescence, leaf 

disks/leaves, plants, protoplasts, roots, and seeds were found as transforming materials 
(Figure 5). 

 

Figure 5. Explants used for the transformation of the different plant species covered in studies on 

gene editing via CRISPR/Cas for tolerance/resistance to biotic stress in the last 12 years. The colors 

of the circles represent each explant and the size of the circumference the frequency of each explant in 

different crops. 

For the rice crop, transformation via CRISPR/Cas was mainly performed using em- 
bryogenic calli, with a frequency of over 50%. Embryos, protoplasts, seeds, leaves, and 
roots were also used as transforming sources, but with a frequency of less than 10%. In 
tomatoes, the most commonly used explants were cotyledons, with a frequency of more 

than 10% of the studies performed on this crop, followed by leaves (<10%). In Arabidopsis, 

the inflorescence (>10%), seeds, protoplasts, leaves, and plant (<10%) were used as explants. 
In wild tobacco, the leaves (>10%), inflorescence, plant, and cotyledons (<10%) were used as 
the main transformation explants (Figure 5). 

3.5. Plant Disease Resistance/Susceptibility Genes 

A word cloud designed from the genes cited in the papers as potential targets for 
resistance/susceptibility to plant diseases. The sucrose efflux transporter gene (SWEET14) 
appears prominently in the center of the word cloud and was the most cited in the papers, 
especially those related to resistance to bacteria Xoo in rice, followed by N Requirement Gene 

1 (NRG1), Pi21 resistance genes, LateraL Organ Boundaries 1 (CsLOB1), Mildew resistance 

locus o 1 (SlMlo1), Dependent Glycosyl Transferases (UGT76b1), and the Xa7 resistance 

gene. The gene families WRKY (14), SWEET/OsSWEET (12), UGT (7), Xa (7), and Solyc 
(5) have also been extensively studied. In the articles selected for this SR, 337 genes related 
to tolerance/resistance to biotic factors were covered; some papers used CRISPR/Cas 
technology to edit more than one gene (Figure 6). 
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Figure 6. Word cloud of CRISPR/Cas edited genes in different plant species related to toler- 

ance/resistance/susceptibility to biotic stresses. 

3.6. Auxiliary Methods to CRISPR/Cas 

The methodological strategies most used in the studies collected to validate and sup- 

port the CRISPR/Cas tool were PCR (27.4%), sequencing (26.5%), qPCR (22.9%), transgenics 
(8.4%), RNA-seq (3.9%), Western blotting (3.5%), transcriptomics (1.8%), virus-induced gene 

silencing (VIGS) (1.0%), bimolecular fluorescence complementation (BiFC) assay (1.0%), 
LC-MS/HPLC liquid chromatography analysis (0.9%), Northern blot (0.7%), microscopy 

(0.6%), metabolomics (0.4%), histochemistry (0.3%), and proteomics (0.2%) (Figure 7). The 
other methods accounted for less than 0.1% of the studies. 

PCR, sequencing, and qPCR techniques were mainly used to demonstrate the efficacy 

of the CRISPR/Cas tool and detect on- and off-target mutations. 
Certain types of software were also used to complement CRISPR/Cas-related anal- 

yses. The CRISPR-P version 2.0 software appears in 16.2% of the articles as an auxiliary 
method to CRISPR/Cas to predict target sites and/or mutations. Other widely used 

software/programs included BLAST, DSDecode, Cas-OFFinder, CCTop, CRISPR-PLANT, 
NCBI, CRISPR-GE, CRISPRdirect, SnapGene, ClustalW, CRISPR Design, CHOPCHOP, 

ClustalX, RNAfold, Geneious, CRISPOR, RNA Folding Form, and TIDE (Figure 8). 
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Figure 7. Auxiliary tools and analyses used with the CRISPR/Cas technique for validation and 

comparison between knockout with control and/or the overexpression of mutants identified in 

articles on tolerance/resistance to biotic stresses in the last 12 years. 

 

Figure 8. Frequency and word cloud of tools and software that help the CRISPR/Cas technique to 

search for specific target sites identified in studies on tolerance/resistance to biotic stresses in the last 

12 years. 
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3.7. Use of CRISPR/Cas Technology 

Most of the CRISPR/Cas methods used in the 296 studies selected for this SR had 

already been validated by other authors.  The method used by Ma et al.   (2015) [48], Xing 

et al. (2014) [49] and Wang et al. (2015) [50], and showed great reproducibility, being used 
in 24.7% of the studies (Table S2) to precisely edit plant genomes, deleting regions 

responsible for unwanted characteristics or inserting gain-of-function mutations. 
For the CRISPR tool to be effective as Cas, endonuclease must be used. Of the studies 

collected, 98.3% (291) used Cas9 as an accessory to this editing system. Other endonucleases 
such as Cpf1, formerly known as Cas12a (2) and Cas13 (3), were also mentioned, but they 

were not very common. 
Several vectors have been used to express Cas and/or single guide RNA (gRNA), but 

the most commonly cited is pCAMBIA and pYLCRISPR/Cas. The most widely used delivery 

method for introducing the gene of interest into plant cells was carried out by Agrobacterium 

tumefaciens (286) and Agrobacterium rhizogenes (6), occurring mainly via electroporation and 

heat shock. 

3.8. Phenotypic Analysis and Characteristics Obtained after Mutation 

Considering the agronomic characteristics and visible symptoms of the disease after 

mutation of the plants, 60.2% of the studies indicated that the phenotype was preserved, 
13.7% inferred that the plants showed unusual characteristics after mutagenesis, such as 

dwarfism, albinism, and more aggressive symptoms of the disease, such as wider lesions than 
would be characteristic, and 26.1% of the articles did not perform this type of analysis or did 

not record having carried it out (Figure 9). 
 

Figure 9. Frequency of articles that performed a phenotypic analysis of plants after mutation and the 

pathogen inoculation test. 
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Greater resistance to plant diseases was observed in approximately 70% of the stud- 
ies and higher plant susceptibility after gene mutation was noted in 28% of the studies,  

indicating that these genes are related to plant defense/immunity response (Table S2). 

3.9. Sources of Bias in the Included Studies 

To assess risk of bias in individual studies, an adaptation of the Cochrane risk of bias tool 

protocol was performed, which is composed of domains; according to the reviewers’ 

judgment, the study/outcome is classified as having a high, low or unclear risk of bias. 
The domains assigned to this SR are important and necessary questions in studies related 

to gene editing by CRISPR/Cas technology. Thus, questions such as “Was phenotypic 
analysis performed after mutation in the plant?”, “Was off-target analysis performed?” 

were used to classify the methodological quality of the selected articles. And three authors did 
these analyses independently to avoid potential biases. 

Based on the classification defined for the risk of bias and the questions designed 
to measure the risk, it can be inferred that 98.6% of the articles presented a low risk of  
bias (Figure 10). Only six articles did not answer question 3 (“Was phenotypic analysis  

performed after mutation in the plant?”) and presented a high risk for this question. Three 
studies had an uncertain answer; however, the other questions were answered, which  

does not invalidate these studies from contributing to this SR. For question 1 (“Was off- 
target analysis performed?”), only two studies did not answer. The other questions were  

answered in full, confirming the good methodological and bibliographical quality of this  
study (Table S3). 

 

Figure 10. Risk of bias analysis based on the following questions: “Q1: Was off-target analysis 

performed? Q2: Was the pathogen inoculated? Q3: Was phenotypic analysis performed after 

mutation in the plant? Q4: Does the article answer at least 50% of the research questions?”. 

4. Discussion 

4.1. Bibliographic Survey 

This SR presents a compilation of data extracted from articles carefully selected be- 

tween 2013 and 2024, with the aim of expanding knowledge on the use of CRISPR/Cas 

technology in plant gene editing for resistance to biotic stresses. The application of the 
CRISPR/Cas system in plants began in 2013 [51–54]; however, until 2015, the works 

consisted mainly of preliminary studies and the validation of techniques and protocols. Lit- 
erature reviews were rejected to avoid bias, and letters to the editor and non-peer-reviewed 
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articles were also disregarded. For this reason, and to obtain more recent studies on the 
subject, articles from the last twelve years were considered. 

The year 2021 saw the largest bibliographic contribution on the subject, which may 
be related to the increased demand for food in the world and the negative effects of the 

COVID-19 pandemic [55], which led to an 18% increase in production in 2021 and an 

11% increase in 2022 [56], stimulating agribusiness and studies focused on the genetic 
improvement of crops in order to minimize food shortages. The amount of data obtained 

on the subject in recent years reveals its importance and the need for investment in this area 
of research aiming to provide returns for the population and rural producers. Furthermore, 

these data reveal that technology is evolving rapidly and could contribute to overcoming 
food shortages for exponentially growing populations [57]. 

The biometric analysis demonstrated that the keywords “disease resistance” or “CRISPR/ 
Cas9” present in the search string are also the most cited words in the selected articles and 

indicate that, over the last twelve years, more than 5000 studies have focused on this topic. 

Keywords such as “viral resistance”, “DNA”, “genomics”, “oomycetes”, “soybean”, and 

“Sclerorotinia sclerotiorum” appear in isolation despite being related to the topic; this is 

because such words are found mainly in the body of the text and not in the titles, abstracts, 
and keywords of the selected articles. 

The authors who have produced the most studies on the subject are from research 
institutions located mainly in China and the USA. The Rice Research Institute and Key Lab 

for Major Crop Diseases located at Sichuan Agricultural University in China is responsible 
for a major contribution to gene-editing work using CRISPR [58–60]. 

4.2. Study Sites and Edited Crops 

Most of the studies included in this SR originated in China (140), which is in line with 

the data on agricultural production. Despite having less than 10% of the world’s 
productive land, the country ranks first in the production of cereals, cotton, fruit, vegetables, 

meat, poultry, and fishery products, as well as accounting for 25% of the world’s grain  
production [61]. This makes the country a major contributor to crop improvement studies 

using the CRISPR/Cas tool. 
The studies performed in the USA were also representative (27). The country is the 

third largest food producer in the world and the first when it comes to exporting corn 

and soybeans, the main agricultural commodities [61]. Countries such as Germany, South 
Korea, Canada, Pakistan, Spain, and India have also contributed to studies on the subject. 

Rice is the second-most-produced food crop in the world and the first-most-cultivated 
in China, which accounts for 30% of world production [61]. It is a monocot considered a 

model,  because its genome is small and easy to manipulate when compared to other 

crops, which justifies the large number of studies (107) using CRISPR/Cas technology as a 
gene-editing tool for improving this crop [62–65]. 

In addition to rice, 27 other plant species have been covered in gene-editing studies in 
this SR. Tomato is the second-most-cited crop (47 articles) and the sixth most important crop 
economically, with a production of more than 100 million tons per year [61]. The model crops, 

Arabidopsis thaliana and Nicotiana sp., were also well cited in the selected papers; this may be 

related to the large amount of information already validated on these species and because 
their genomes have already been sequenced [66–69]. 

4.3. Biotic Stresses 

Biotic stressors such as pathogens, insect pests, and weeds reduce the yield and quality 
of agricultural production. In high-yielding crops such as wheat, rice, corn, potatoes, and 
soybeans, losses can range from 17.2% in potatoes to 30% in rice [70]. Several diseases 

affect rice cultivation. Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae 

(Xoo), is considered one of the most important bacterial diseases of rice. Irrigated or rainfed 

areas are common for growing this species and favor the development of the disease due 
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to the abundance of water facilitating the dispersion of the pathogen, or through the high 
availability of nitrogen [62,71–75]. 

Bacterial leaf streak of rice caused by X. oryzae pv. oryzicola (Xoc) is also another disease 

that has been widely covered in the studies collected [76–78]. The genus Xanthomonas has 
been the most studied in gene editing via CRISPR/Cas in the last twelve years [75]. The 

studies seek to understand the mechanisms involved in plant defense against pathogens in 
order to make them resistant/tolerant to diseases. 

Brusone is the main fungal disease of rice, caused by Magnaporthe oryzae, which 
establishes itself in the plant under favorable environmental conditions and causes damage 
to grain quality, plant height, and the number of tillers [79]. Rice is grown and consumed 
worldwide and is a staple food for around 2.5 billion people [61],  so it is necessary to 
understand the biology of these pathogens to develop strategies to control these diseases. 

Pseudomonas syringae was another pathogen that was mentioned frequently [80–83]. 
This bacterium is found in a wide variety of plants and penetrates host tissues through 

lesions or structures such as stomata [84]. The species has been widely used to elucidate 
questions about plant immunity and bacterial pathogenesis. In the selected articles, the 

bacterium is mainly present in studies with the model plant A. thaliana [66,85]. 

Tomatoes are an economically essential vegetable worldwide and their production is 

also threatened by many pathogens [86–88]. Gray mold, caused by Botrytis cinerea, rarely 

occurs in the field; however, in protected environments, humidity becomes a problem, 
favoring the development of the fungus, which infects the plant through wounds and 
causes the rapid rotting of the fruit, resulting in harvest losses. Other biotic agents have 

also been addressed in the studies, such as fungi (such as Fusarium), CMV viruses, CLCuVs, 

and the Phytophthora oomycete. 

4.4. Types of Explants 

The genetic transformation of plants is based on the insertion of transgenes into 
totipotent plant cells, which then regenerate into fertile plants. Small fragments of living 
tissue isolated from a plant specimen, called explants, are used [89]. The explants used for 

transformation via Agrobacterium or bioballistics can vary depending on the plant species, 

including calli, embryos, protoplasts, inflorescence, leaves, hypocotyls, epicotyls, and 
cotyledons [2,62,90–95]. 

When transformation occurs by electroporation, protoplasts undergo membrane desta- 
bilization after being subjected to high voltage, resulting in temporary pores in the cell 

membrane, allowing for the influx of DNA molecules that will integrate into the genome of the 
species to be mutated [96]. This type of method requires plants to be obtained entirely from 

protoplasts, which requires mastery of the production and regeneration of this type of 
explant, which is still a challenge in tissue culture [97]. 

The vast majority of the studies collected for this research used embryogenic calli and 

leaves as explants for various plant crops. In rice, the use of calli as an explant source is  
predominant [62,74,98–100]. Calli are formed practically from any fragment of the plant; in 

rice, seeds are commonly used to induce calli, which grow slowly as an amorphous cell  
mass through stimuli supplemented with specific phytohormones [89]. 

In tomatoes, transformations have been carried out mainly from cotyledon and leaf 

explants [81,93,101]. Most tissue culture tests in this species have been performed to achieve 
organogenesis over somatic embryogenesis [102]. In studies performed by Costa et al. 

(2000) [103], the tomato varieties ‘IPA-5’ and ‘IPA-6’ demonstrated favorable regeneration 
capacity (97 and 80%, respectively) from cotyledons when inserted into a supplemented 

Murashige and Skoog medium. 

Studies with A. thaliana have mainly used flowers/inflorescences as a source of ex- 
plants [92,104–106]. The floral immersion method is considered simple, fast, and efficient, 
and consists of immersing developing floral tissues in a solution containing Agrobacterium 

tumefaciens, sucrose, and detergent to transform the plants [107,108]. 
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In tobacco, leaves were the most commonly used explants [68,109,110]. In direct 
somatic embryogenesis tests, using leaf tissue explants from different tobacco genotypes, 

different Agrobacterium strains, and different transformation methods, the transformation 

and regeneration rates varied [111,112]. The success of the transformation system involves 
the integration of the DNA into the host genome, the expression, inheritance, and stability 
of the exogenous DNA, as well as the regeneration of explants that depend largely on the 
genotype, origin, and age of the explant and plant growth regulators used to supplement 
culture media [113]. 

4.5. Plant Disease Resistance/Susceptibility Genes 

The gene that stood out in CRISPR/Cas studies for resistance to biotic stresses was 

SWEET14 (Figure 6). SWEET genes encode sugar transporter proteins and often function 

as susceptibility (S) genes, the recessive alleles of which provide resistance [114]. This gene 

has been extensively studied and reviewed in studies involving the bacterial pathogen Xoo, 

which causes bacterial rust in rice [114,115]. In the context of plant–pathogen interaction, 
transcription activator-like effectors (TALEs) of the pathogen function in diverting the 

nutritional resources of rice, inducing the expression of OsSWEET14 and thus causing 

susceptibility [72,114]. The activation of SWEET14 by the pathogen results in an increase in 

the amount of sucrose available in the phloem apoplast, providing a source of nutrition for 
the pathogen promoting its proliferation [116]. 

The main strategy when using CRISPR/Cas9 in relation to the SWEET14 gene is to 

mutate the coding region of OsSWEET14 to test whether its disruption will result in broad- 

spectrum resistance to Xoo strains in rice [72,117] or the disruption of the TALE-binding 

elements of Xoo in rice harboring the recessive resistance allele in order to defuse the arms 
race between the effectors of the pathogen and their host targets [26,118,119]. Inhibition or 
SWEET14 editing can reduce the plant’s susceptibility to the pathogen, a potential strategy  
for the development of resistant cultivars. 

Other genes, such as NRG1, Pi21 resistance genes, CsLOB1, SlMlo1, dependent glycosyl 

transferases (UGT76b1), and the Xa7 resistance gene, were also reported with considerable 

frequency in the studies (Figure 6). The NRG1 genes are close homologs of the Activated 

Disease Resistance 1 family of leucine-rich repeat domain proteins (NLRs), the function 
of which is still unclear, so some studies have reported their functional analysis through 

CRISPR/Cas9 in Arabidopsis [120–122]. The Pi21 gene belongs to the set of R genes that 

encode NLRs. It is resistant to rice brusone and is, therefore, the target of CRISPR/Cas9 rice-
breeding programs to obtain mutant varieties [75,123–125]. 

Plants can prevent pathogen attacks through induced systemic resistance (ISR) and 

acquired systemic resistance (SAR). What differentiates them are the types of induction in the 
plant. SAR is activated through disease-causing organisms and relies on salicylic acid (SA) 

and genes, whereas beneficial microbes induce ISR and are independent of SA [126]. The 
two forms of resistance are activated from different defense signals when the plant is 

attacked by pathogens [127]. 

4.6. CRISPR/Cas Technology for Gene Editing 

This SR sought to identify the most commonly used protocols for gene editing via CRISPR 
over the last twelve years. Among the editing methods used, the protocols proposed by Ma 

et al. (2015) [48], Xing et al. (2014) [49] and Wang et al. (2015) [50] were the most cited, 
respectively. The three protocols seek to edit various target genes in dicots and monocots 

using a multiplexing system, using one to several binary vectors and the Cas9 
endonuclease. These results corroborate the findings of [22] in a systematic review of gene 

editing using CRISPR technology to edit genes tolerant to abiotic stresses. 
Different CRISPR/Cas systems have been widely used to generate DSBs at target 

genomic sites in various plant species. Among the two classes of CRISPR immune systems, 

Class 2 is simpler than Class 1 and therefore easier to use for the development of genome 
editing tools [128]. Thus, three Class 2 effectors, Cas9, Cas12, and Cas13, have been 
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extensively used for targeted DNA and RNA cleavage. The Cas9 endonuclease was the 
most widely used in the articles in this SR (259 studies), followed by Cas13 (3), and Cas12 

(2). The effectors Cas9 and Cas12 are DNA-directed endonucleases, while Cas13 is an 
RNA-directed endonuclease [129]. 

As evidenced by Jinek et al. (2012) [14], Cas9 nucleases are guided by an RNA hybrid 
consisting of a crRNA and a tracrRNA. However, most Cas9 genome editing applications 
use an sgRNA that is designed by fusing crRNA and tracrRNA into a single RNA molecule 
for Cas9 to cleave DNA [130,131]. Normally, CRISPR/Cas9 requires a target site of 17 to 

20 bp directly adjacent to a 5′-NGG PAM sequence (motif adjacent to the protospacer) to 
be effectively recognized by sgRNA [15,132]. Several authors have used Cas9 [68,133–
136], and although several Cas9 orthologs have been discovered [137], Cas9 from 

Streptococcus pyogenes (SpCas9) is the nuclease that has been used the most for different 

genome manipulation experiments due to its high efficiency and simple NGG PAM 
sequence requirements [129]. 

The Cas12 endonuclease was identified in this SR with the aim of knocking out 
Xa13 [138] and PRAF2 [28] to improve resistance to bacterial rust caused by Xanthomonas 

oryzae pv. Oryzae. Cas12 is a class II type V endonuclease that was developed from Prevotella 

and Francisella [139]; it cleaves at a distal position of the PAM, generating a staggered break 

of the DNA double-strand, and recognizes a PAM region rich in T 5 ′-TTN-3′ [140] and 
proved to be an efficient alternative in editing these genes. Cas13 cleaves single-stranded 
RNA [141], and in the studies observed it was used to interfere against RNA viruses in 
plants, also presenting itself as a viable alternative to the use of Cas9 [142–144]. 

Cas9 and gRNA are regulated by appropriate promoters within a vector. The cauliflower 

mosaic virus (CaMV35S) is a constitutive promoter widely used for its strong expression in 
various plant tissues, being effective for mutations throughout the organism. The ubiquitin 

promoter (UBI), also constitutive and commonly used in monocots, has efficient and stable 
expression, especially in recalcitrant cultures. In addition, specific tissue promoters can also 

be used to induce mutations in plants. These allow for more controlled editing, limiting 
the expression of the system to specific sites, which reduces off-target effects, but can make 

mutations in the whole organism less efficient. The choice of promoter is crucial for the 
efficiency of the mutation due to to the objectives of gene editing, such as the need for 

localization or plant-wide expression, species compatibility, expression and efficiency, and the 
risks of off-site effects [145–147]. 

Several vectors have been used to express Cas and/or sgRNA, among the most cited 
being pCAMBIA (46) [63,73,148] a popular vector due to its easy handling, stability, and the 

existence of a variety of selection and reporter genes [149], and the pYLCRISPR/Cas9 vector 
(40) [150,151], which is a CRISPR/Cas9 system efficient in multi-locus gene knockout [48]. 
Other vectors, such as pHEE401E [152], also had considerable frequencies (Table S2). The 
most widely used delivery method for introducing the gene of interest into plant cells was 

carried out by Agrobacterium tumefaciens (286) and Agrobacterium rhizogenes (6). This is 

considered a powerful tool for delivering genes of interest to a host plant due to the efficiency 
of transformation, the low operating cost, and the simplicity of the transformation and 
selection protocols [153]. 

Although Agrobacterium mediated delivery is very efficient, it also has some dis- 
advantages, such as the need for long periods of tissue culture to recover transgenic plants, 
the low frequency of stably transformed plants, the narrow range of genotypes within a crop 

species that can be transformed, and the limitations of the host range of certain Agrobacterium 
species [154]. The delivery of CRISPR/Cas reagents to plants can be carried out by several 

methods. The most common in addition to Agrobacterium tumefaciens mediated 

transformation include particle bombardment (biobalistics) and protoplast transfection 
[155,156]. 
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Particle bombardment is useful for recalcitrant plant species, but it can cause physical 
damage to cells and random DNA integrations. Protoplast transfection, on the other hand, 

allows for the delivery of ribonucleoproteins (RNPs), reducing the risk of exogenous DNA 
integration, but the regeneration of complete plants from protoplasts can be challenging in 

some cultures [155,156]. Additional delivery methods of the CRISPR/Cas system, such as 
the use of nanoparticles and pollen magnetofection, can be an alternative for more precise 

and efficient delivery [157]. 

4.7. Auxiliary Methods to CRISPR/Cas 

The main methodological strategies used in the studies collected to validate and 
support the CRISPR/Cas tool were PCR, sequencing, and qPCR techniques (Figure 7); 

these were mainly used to prove the efficacy of CRISPR/Cas-mediated editing and detect 
on- and off-target mutations (Figure 7). The PCR technique is an essential tool in molecular 

biology that allows for the amplification of nucleic acid sequences (DNA and RNA) through 
repetitive cycles in vitro, simulating what occurs in vivo during DNA replication [158]. 

PCR followed by sequencing has been reported in many studies; however, Zischewski 

et al. [159] highlight that a disadvantage of screening only potential pre-selected off-target 
sequences is the risk of overlooking mutations at other loci in the plant genome. In contrast, 

the use of the unbiased whole-genome-sequencing approach is the most com- mon 
detection method in plants, allowing for the identification of off-target effects in a less 

restricted way [160]. 
Different prediction software were also used to detect off-target effects (Figure 8). 

The CRISPR-P software was reported in 16.2% of the articles as an auxiliary method to 

CRISPR/Cas, aimed at predicting target sites and/or mutations. Other software/programs, 
such as BLAST, DSDecode, Cas-OFFinder, CCTop, CRISPR-PLANT, and CHOPCHOP, also had 

considerable frequencies. A major concern in CRISPR/Cas9 system applications is its off-
target effects that occur when Cas9 acts on untargeted genomic sites and creates cleavages 

that can lead to adverse outcomes [161]. 
The tools identified in this SR aid in silico prediction and are generally free online 

software that can be properly accessed via the Internet. The prediction algorithms of 

these software are mainly based on sgRNA sequences, so the results of these methods 
are generally biased toward sgRNA-dependent off-target effects. For epigenetics and 

chromatin organization experiments, off-target prediction by these in silico tools needs 
additional experimental validation [161]. 

4.8. Phenotypic Analysis and Characteristics Obtained after Mutation 

In 60.2% of the articles, the phenotype was preserved, with no unusual or unexpected 

characteristics occurring after mutagenesis. Sixty-one percent exhibited greater resistance to 
plant diseases and 29% greater susceptibility after editing (Figure 9). This is because most 

studies are focused on knocking out/silencing genes or knocking in/overexpressing a gene to 
study and demonstrate its functions. Thus, the technique that cuts double-stranded DNA and 

generates a DSB will be repaired by the NHEJ repair mechanism; this can be carried out for 
a specific and individual gene without other side effects [162]. 

In other articles, the CRISPR/Cas technique has been used to knock-in the overexpres- 

sion of an individual gene. In this sense, it is possible to edit the genome by cutting the 
DNA sequence at a specific site, and then, through HDR, a foreign DNA sequence (target 

gene) will be inserted at this cleavage site [162]. In this way, position effects can be avoided 
because CRISPR/Cas can be used to precisely insert a foreign gene into a specific location 

within a genome without interrupting other genes. 
In this sense, the overexpression of the OsbHLH6 gene in transgenic rice plants caused 

responsive gene expression to jasmonic acid and increased susceptibility to the pathogen 

Magnaporthe oryzae [63]. Similarly, the overexpression of the GmLMM1 gene in Nicotiana 

benthamiana severely suppressed the production of reactive oxygen species triggered by 
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microbe-associated molecules (bacterial flg22) and the pattern-induced cell death of the 

oomycete Phytophthora sojae [163]. 
Thus, the use of the CRISPR/Cas technique associated with gene knockout/silencing 

or gene knock-in/overexpression has contributed to the elucidation of various plant– 
pathogen interaction pathways in many pathosystems, without causing unwanted pheno- 

typic changes, such as citrus canker caused by Xanthomonas citri subsp. citri in citrus [2], BLS 

of rice caused by Xoc and Xanthomonas campestris pv. campestris [73,164,165], Phytophthora 

sojae in soybeans [144], and Botrytis cinerea in tomatoes [81]. 

4.9. Sources of Bias in the Included Studies 

The aim of SRs is to gather and synthesize data on a given topic that meets pre- 

established eligibility criteria and methods are used to reduce the chances of data bias [166]. 

The Cochrane Collaboration Tool was developed to assess the risk of bias of the studies to 
be included in the SRs and is widely used in health studies [47], which is why the method 

was adapted to the needs of this SR. 
The tool aims to make the process clearer and more precise, free from errors that compro- 

mise the quality of the research. Therefore, possible limitations of the primary studies must be 

carefully assessed so that the results and conclusions obtained are reliable. It is not possible to 
determine the “quality” of a study without any kind of criteria; it is necessary to observe the  

design, the conducting of the research, and the analysis and presentation of the results so that 
the studies are not underestimated or overestimated [47,167]. 

In order to minimize errors in the choice of studies collected for this SR, inclu- 
sion/exclusion criteria, the PRISMA checklist, and questions on the topic (Table 3) were 

used to confirm whether the use of CRISPR/Cas technology was efficient in gene editing  
through off-target analysis. Inoculation tests of the pathogen and phenotypic analysis were 

also considered, as well as articles that answered at least 50% of the research questions  

(Table 1). 
Literature reviews were excluded from the research, as many papers are cited repeat- 

edly in the reviews, overestimating the data. Manuscripts that did not answer at least 75% 
of the risk-of-bias questions were considered high-risk and were not included in this SR. Only 

nine articles presented a risk equal to 25% for not answering one of the four questions, which 
is considered a low risk of bias, and two articles presented moderate risk, which means they 

answered only 50% of the questions. The articles selected for this SR are highly qualified and 
the methodologies used are reliable. 

5. Final Considerations and Future Perspectives 

The growing demand for food is a challenge for society in the face of population 

growth, changes in consumption patterns, environmental changes, and dealing with 
pathogens that cause plant diseases and pests. Meeting this demand is based on the need 

to guarantee global food security. 

Biotic and abiotic stresses cause major losses in agricultural production, which calls 
for novel strategies to subsidize plant tolerance, as conventional practices are insufficient to 

meet the current and future food needs of the population. The use of the CRISPR/Cas tool can 
accelerate plant breeding by rapidly modifying genomes in a predictable and accurate way. 

Due to its efficiency, simplicity, and versatility, CRISPR/Cas has become a popular tool for 
genome editing and has been widely used in improving the resistance of various crops [57]. 

The development of disease-resistant varieties with good yields and quality is a fundamental 
strategy to guarantee global food security and generate employment and income for farmers. 

This SR included 296 papers in which plant genes were edited via CRISPR/Cas to  
confer resistance to plant diseases and pests. We identified that Cas9 endonuclease is 
widely used in studies; however, this is not the only “molecular scissors” that can help the 

CRISPR editing system; the use of other enzymes such as Cpf1 (Cas12a), and Cas 13 has 
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been reported in CRISPR studies for editing genes related to plant resistance and could be 
applied more frequently in future studies. 

Genes related to tolerance/resistance to biotic stresses were identified in this SR and the 
CRISPR/Cas system can be used for gene knockout, gene insertion and gene replacement, 

resulting in the loss of function, knockdown or activation of mutants, which can lead to the 

generation of tolerant/resistant plants to the various pathogens. However, some issues are 
still far from being clarified and serve as a starting point for future studies, such as the 

fact that the main genes that control important traits of crops have not been identified, which 
limits the application of CRISPR/Cas in plant breeding; and pathogens continue to modify 

their genome through evolution to break the already available resistance gained by editing 
the CRISPR/Cas gene. Thus, it is necessary to design new variants in a short period of time 

and insert them into the plants. In addition, many genes are represented by multigene 
families, making it difficult to produce a resistance phenotype by eliminating a single gene, 

and it is necessary to develop more precise CRISPR/Cas tools to perform multiplex genome 
editing. 

Regarding the methods used for editing, gRNAs were designed with different target 
sequences to direct Cas9 to specific corresponding sites; however, proper care is important 
when designing gRNAs, as unwanted targets are a major limitation, and to reduce these 

challenges, tools and software such as CRISPR-P, CRISPR-GE, BLAST, among others, are 
used. Among the methods used for mutation detection, PCR and sequencing are the most 

reported methods that can detect unwanted targets. Explant regeneration in most plants is 
still a challenge because it is labor-intensive and poses a limitation in CRISPR/Cas-based 

gene editing. 

The information provided in this SR was based on articles with methodological quality 
confirmed by a risk of bias analysis, which determined that most of the included studies 
were at low risk of bias. Among the most-studied crops, rice, tomatoes, and the model 

plant Arabidopsis thaliana stand out. Among the most studied genera of biotic agents are 

Xanthomonas, Magnaporthe, Phytophthora and cucumber mosaic, belonging to the group of 

bacteria, fungi, oomycete and viruses, respectively. 
Although the use of CRISPR/Cas technology has revolutionized plant breeding in recent 

years, there are still many challenges to be overcome; its off-target alterations are the main 

bioethical concern, namely whether they can lead to ecological imbalance, genetic drift, 
fatal diseases, or a chimeric phenotype in animals or even in humans. Another concern is 

whether GMOs produced by CRISPR/Cas9 can change the natural ecosystem by changing the 
mating potential of living organisms. Agricultural foods produced by CRISPR also face the 

same challenges as GMOs and may be prevented from being consumed in some countries. 
Despite these concerns, plants developed CRISPR/Cas can also become safe and GMO-free 

by using ribonucleoproteins (RNPs), i.e., without exogenous DNA. This will also help 
overcome the hurdles scientists face in commercializing biotech crops. To date, around 128 

plant cultivars such as corn, soybeans, cotton, wheat, and sugar cane have been genetically 

edited, mainly for resistance to insects and/or herbicides, and have been approved by the 
National Technical Biosafety Commission [168]. 

Studies on gene editing with CRISPR/Cas for resistance to biotic agents are only 
beginning. The results obtained so far not only show that this technology offers precise 
modifications to the plant genome and has been successfully used to confer resistance to 

diseases and pests, but are also essential mainly to understand the function of genes related 
to various pathways of plant–pathogen interaction. 
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266. Jia, H.; Zhang, Y.; Orbović, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome Editing of the Disease Susceptibility Gene CsLOB1 
in Citrus Confers Resistance to Citrus Canker. Plant Biotechnol. J. 2017, 15, 817–823. [CrossRef] 

267. Li, S.; Lin, D.; Zhang, Y.; Deng, M.; Chen, Y.; Lv, B.; Li, B.; Lei, Y.; Wang, Y.; Zhao, L.; et al.  Genome-Edited Powdery Mildew 

Resistance in Wheat without Growth Penalties. Nature 2022, 602, 455–460. [CrossRef] 

268. Liu, M.; Kang, H.; Xu, Y.; Peng, Y.; Wang, D.; Gao, L.; Wang, X.; Ning, Y.; Wu, J.; Liu, W.; et al. Genome -wide Association Study 

Identifies an NLR Gene That Confers Partial Resistance to Magnaporthe oryzae in Rice. Plant Biotechnol. J. 2020, 18, 1376–1383. 

[CrossRef] 

269. Laura, M.; Forti, C.; Barberini, S.; Ciorba, R.; Mascarello, C.; Giovannini, A.; Pistelli, L.; Pieracci, Y.; Lanteri, A.P.; Ronca, A.; 
et al. Highly Efficient CRISPR/Cas9 Mediated Gene Editing in Ocimum basilicum ‘FT Italiko’ to Induce Resistance to Peronospora 

belbahrii. Plants 2023, 12, 2395. [CrossRef] 

270. Huang, Y.-Y.; Liu, X.-X.; Xie, Y.; Lin, X.-Y.; Hu, Z.-J.; Wang, H.; Wang, L.-F.; Dang, W.-Q.; Zhang, L.-L.; Zhu, Y.; et al. Identification 

of FERONIA-like Receptor Genes Involved in Rice-Magnaporthe oryzae Interaction. Phytopathol. Res. 2020, 2, 14. [CrossRef] 

271. Dong, O.X.; Ao, K.; Xu, F.; Johnson, K.C.M.; Wu, Y.; Li, L.; Xia, S.; Liu, Y.; Huang, Y.; Rodriguez, E.; et al. Individual Components 

of Paired Typical NLR Immune Receptors Are Regulated by Distinct E3 Ligases. Nat. Plants 2018, 4, 699–710. [CrossRef] 

272. Wang, J.; Tian, D.; Gu, K.; Yang, X.; Wang, L.; Zeng, X.; Yin, Z. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers 

Disease Resistance to Rice Bacterial Blight. Mol. Plant-Microbe Interact. 2017, 30, 466–477. [CrossRef] 

273. Yang, Z.; Huang, Y.; Yang, J.; Yao, S.; Zhao, K.; Wang, D.; Qin, Q.; Bian, Z.; Li, Y.; Lan, Y.; et al. Jasmonate Signaling En hances RNA 

Silencing and Antiviral Defense in Rice. Cell Host Microbe 2020, 28, 89–103.e8. [CrossRef] [PubMed] 

274. Yang, W.; Liu, C.; Fu, Q.; Jia, X.; Deng, L.; Feng, C.; Wang, Y.; Yang, Z.; Yang, H.; Xu, X. Knockout of SlbZIP68 Reduces Lat e Blight 

Resistance in Tomato. Plant Sci. 2023, 336, 111861. [CrossRef] [PubMed] 

275. Cao, Y.; Yan, X.; Ran, S.; Ralph, J.; Smith, R.A.; Chen, X.; Qu, C.; Li, J.; Liu, L. Knockout of the Lignin Pathway Gene BnF5H Decreases 

the S/G Lignin Compositional Ratio and Improves Sclerotinia sclerotiorum Resistance in Brassica napus. Plant Cell Environ. 2022, 

45, 248–261. [CrossRef] [PubMed] 

https://doi.org/10.1186/s12870-023-04549-5
https://doi.org/10.1038/s41467-020-18069-5
https://www.ncbi.nlm.nih.gov/pubmed/32879321
https://doi.org/10.1093/hr/uhae129
https://www.ncbi.nlm.nih.gov/pubmed/38966865
https://doi.org/10.1111/nph.17436
https://www.ncbi.nlm.nih.gov/pubmed/33960431
https://doi.org/10.1111/tpj.15082
https://www.ncbi.nlm.nih.gov/pubmed/33210758
https://doi.org/10.1111/pbi.12924
https://doi.org/10.1002/advs.202309785
https://doi.org/10.1016/j.jgg.2018.08.003
https://doi.org/10.1093/g3journal/jkab028
https://doi.org/10.1111/tpj.12838
https://doi.org/10.3389/fpls.2020.00557
https://doi.org/10.1094/MPMI-11-19-0332-R
https://www.ncbi.nlm.nih.gov/pubmed/31790345
https://doi.org/10.3389/fpls.2020.01098
https://www.ncbi.nlm.nih.gov/pubmed/32849681
https://doi.org/10.1111/pbi.12677
https://doi.org/10.1038/s41586-022-04395-9
https://doi.org/10.1111/pbi.13300
https://doi.org/10.3390/plants12132395
https://doi.org/10.1186/s42483-020-00052-z
https://doi.org/10.1038/s41477-018-0216-8
https://doi.org/10.1094/MPMI-11-16-0229-R
https://doi.org/10.1016/j.chom.2020.05.001
https://www.ncbi.nlm.nih.gov/pubmed/32504578
https://doi.org/10.1016/j.plantsci.2023.111861
https://www.ncbi.nlm.nih.gov/pubmed/37689280
https://doi.org/10.1111/pce.14208
https://www.ncbi.nlm.nih.gov/pubmed/34697825


Curr. Issues Mol. Biol. 2024, 46 11119 
 

 
 

 

 
276. Zhou, H.; Liu, B.; Weeks, D.P.; Spalding, M.H.; Yang, B. Large Chromosomal Deletions and Heritable Small Genetic Changes 

Induced by CRISPR/Cas9 in Rice. Nucleic Acids Res. 2014, 42, 10903–10914. [CrossRef] [PubMed] 

277. Wang, L.; Zhao, L.; Zhang, X.; Zhang, Q.; Jia, Y.; Wang, G.; Li, S.; Tian, D.; Li, W.-H.; Yang, S. Large-Scale Identification and 

Functional Analysis of NLR Genes in Blast Resistance in the Tetep Rice Genome Sequence. Proc. Natl. Acad. Sci. USA 2019, 116, 

18479–18487. [CrossRef] 

278. Li, R.; Cui, L.; Martina, M.; Bracuto, V.; Meijer-Dekens, F.; Wolters, A.-M.A.; Moglia, A.; Bai, Y.; Acquadro, A. Less Is More: 

CRISPR/Cas9-Based Mutations in DND1 Gene Enhance Tomato Resistance to Powdery Mildew with Low Fitness Costs. BMC 

Plant Biol. 2024, 24, 763. [CrossRef] 

279. Qin, P.; Fan, S.; Deng, L.; Zhong, G.; Zhang, S.; Li, M.; Chen, W.; Wang, G.; Tu, B.; Wang, Y.; et al. LML1, Encoding a Conserved 
Eukaryotic Release Factor 1 Protein, Regulates Cell Death and Pathogen Resistance by Forming a Conserved Complex with  

SPL33 in Rice. Plant Cell Physiol. 2018, 59, 887–902. [CrossRef] 

280. Pröbsting, M.; Schenke, D.; Hossain, R.; Häder, C.; Thurau, T.; Wighardt, L.; Schuster, A.; Zhou, Z.; Ye, W.; Rietz, S.; et al. Loss of Function 
of CRT1a (Calreticulin) Reduces Plant Susceptibility to Verticillium longisporum in Both Arabidopsis thaliana and Oilseed Rape 

(Brassica napus). Plant Biotechnol. J. 2020, 18, 2328–2344. [CrossRef] 
281. Ramos, R.N.; Zhang, N.; Lauff, D.B.; Valenzuela-Riffo, F.; Figueroa, C.R.; Martin, G.B.; Pombo, M.A.; Rosli, H.G. Loss-of-Function 

Mutations in WRKY22 and WRKY25 Impair Stomatal-Mediated Immunity and PTI and ETI Responses against Pseudomonas 

syringae pv. Tomato. Plant Mol. Biol. 2023, 112, 161–177. [CrossRef] 

282. Yang, T.; Song, L.; Hu, J.; Qiao, L.; Yu, Q.; Wang, Z.; Chen, X.; Lu, G. Magnaporthe oryzae Effector AvrPik-D Targets a Transcription 

Factor WG7 to Suppress Rice Immunity. Rice 2024, 17, 14. [CrossRef] 

283. Meng, G.; Xiao, Y.; Li, A.; Qian, Z.; Xie, Y.; Yang, L.; Lin, H.; Yang, W. Mapping and Characterization of the Rx3 Gene for Resistance to 

Xanthomonas euvesicatoria pv. euvesicatoria Race T1 in Tomato. Theor. Appl. Genet. 2022, 135, 1637–1656. [CrossRef] [PubMed] 

284. Wang, N.; Liu, Y.; Dong, C.; Zhang, Y.; Bai, S. MdMAPKKK1 Regulates Apple Resistance to Botryosphaeria dothidea by Interacting 

with MdBSK1. Int. J. Mol. Sci. 2022, 23, 4415. [CrossRef] [PubMed] 

285. Bastet, A.; Zafirov, D.; Giovinazzo, N.; Guyon-Debast, A.; Nogué, F.; Robaglia, C.; Gallois, J. Mimicking Natural Polymorphism 

in eIF4E by CRISPR-Cas9 Base Editing Is Associated with Resistance to Potyviruses. Plant Biotechnol. J. 2019, 17, 1736–1750. 
[CrossRef] [PubMed] 

286. Zhu, X.; Kuang, Y.; Chen, Y.; Shi, J.; Cao, Y.; Hu, J.; Yu, C.; Yang, F.; Tian, F.; Chen, H. miR2118 Negatively Regulates Bacterial 

Blight Resistance through Targeting Several Disease Resistance Genes in Rice. Plants 2023, 12, 3815. [CrossRef] 

287. Yang, Z.; Hui, S.; Lv, Y.; Zhang, M.; Chen, D.; Tian, J.; Zhang, H.; Liu, H.; Cao, J.; Xie, W.; et al. miR395-Regulated Sulfate 

Metabolism Exploits Pathogen Sensitivity to Sulfate to Boost Immunity in Rice. Mol. Plant 2022, 15, 671–688. [CrossRef] 

288. Huang, X.; Zhu, G.; Liu, Q.; Chen, L.; Li, Y.; Hou, B. Modulation of Plant Salicylic Acid-Associated Immune Responses via 

Glycosylation of Dihydroxybenzoic Acids. Plant Physiol. 2018, 176, 3103–3119. [CrossRef] 

289. Roberts, R.; Liu, A.E.; Wan, L.; Geiger, A.M.; Hind, S.R.; Rosli, H.G.; Martin, G.B. Molecular Characterization of Differences 

between the Tomato Immune Receptors Flagellin Sensing 3 and Flagellin Sensing 2. Plant Physiol. 2020, 183, 1825–1837. [CrossRef] 

290. Xu, J.; Wang, X.; Zu, H.; Zeng, X.; Baldwin, I.T.; Lou, Y.; Li, R. Molecular Dissection of Rice Phytohormone Signaling Involved in 

Resistance to a Piercing-sucking Herbivore. New Phytol. 2021, 230, 1639–1652. [CrossRef] 

291. Zhou, X.; Zhong, T.; Wu, M.; Li, Q.; Yu, W.; Gan, L.; Xiang, X.; Zhang, Y.; Shi, Y.; Zhou, Y.; et al. Multiomics Analysis of a Resistant 
European Turnip ECD04 during Clubroot Infection Reveals Key Hub Genes Underlying Resistance Mechanism. Front. Plant Sci. 

2024, 15, 1396602. [CrossRef] 

292. Zhang, P.; Du, H.; Wang, J.; Pu, Y.; Yang, C.; Yan, R.; Yang, H.; Cheng, H.; Yu, D. Multiplex CRISPR/Cas9-mediated Metabolic 

Engineering Increases Soya Bean Isoflavone Content and Resistance to Soya Bean Mosaic Virus. Plant Biotechnol. J. 2020, 18, 

1384–1395. [CrossRef] 

293. Nizan, S.; Amitzur, A.; Dahan-Meir, T.; Benichou, J.I.C.; Bar-Ziv, A.; Perl-Treves, R. Mutagenesis of the Melon Prv Gene by 

CRISPR/Cas9 Breaks Papaya Ringspot Virus Resistance and Generates an Autoimmune Allele with Constitutive Defense  

Responses. J. Exp. Bot. 2023, 74, 4579–4596. [CrossRef] [PubMed] 

294. Liao, Y.; Bai, Q.; Xu, P.; Wu, T.; Guo, D.; Peng, Y.; Zhang, H.; Deng, X.; Chen, X.; Luo, M.; et al. Mutation in Rice Abscisi c Acid2 

Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development. Front. Plant Sci. 2018, 9, 405. 

[CrossRef] [PubMed] 

295. Ijaz, S.; Haq, I.U.; Razzaq, H.A. Mutation Introduced in DDTFR10/A Gene of Ethylene Response Element-Binding Protein 
(EREBP) Family through CRISPR/Cas9 Genome Editing Confers Increased Fusarium Wilt Tolerance in Tomato. Physiol. Mol. Biol. 

Plants 2023, 29, 1–10. [CrossRef] [PubMed] 

296. Kim, S.-Y.; Bengtsson, T.; Olsson, N.; Hot, V.; Zhu, L.-H.; Åhman, I. Mutations in Two Aphid-Regulated β-1,3-Glucanase Genes by 

CRISPR/Cas9 Do Not Increase Barley Resistance to Rhopalosiphum padi L. Front. Plant Sci. 2020, 11, 1043. [CrossRef] 

297. Kieu, N.P.; Lenman, M.; Wang, E.S.; Petersen, B.L.; Andreasson, E. Mutations Introduced in Susceptibility Genes through 

CRISPR/Cas9 Genome Editing Confer Increased Late Blight Resistance in Potatoes. Sci. Rep. 2021, 11, 4487. [CrossRef] 

298. Yang, Z.; Xing, J.; Wang, L.; Liu, Y.; Qu, J.; Tan, Y.; Fu, X.; Lin, Q.; Deng, H.; Yu, F. Mutations of Two FERONIA-like Receptor Genes 

Enhance Rice Blast Resistance without Growth Penalty. J. Exp. Bot. 2020, 71, 2112–2126. [CrossRef] 

https://doi.org/10.1093/nar/gku806
https://www.ncbi.nlm.nih.gov/pubmed/25200087
https://doi.org/10.1073/pnas.1910229116
https://doi.org/10.1186/s12870-024-05428-3
https://doi.org/10.1093/pcp/pcy056
https://doi.org/10.1111/pbi.13394
https://doi.org/10.1007/s11103-023-01358-0
https://doi.org/10.1186/s12284-024-00693-0
https://doi.org/10.1007/s00122-022-04059-2
https://www.ncbi.nlm.nih.gov/pubmed/35217878
https://doi.org/10.3390/ijms23084415
https://www.ncbi.nlm.nih.gov/pubmed/35457232
https://doi.org/10.1111/pbi.13096
https://www.ncbi.nlm.nih.gov/pubmed/30784179
https://doi.org/10.3390/plants12223815
https://doi.org/10.1016/j.molp.2021.12.013
https://doi.org/10.1104/pp.17.01530
https://doi.org/10.1104/pp.20.00184
https://doi.org/10.1111/nph.17251
https://doi.org/10.3389/fpls.2024.1396602
https://doi.org/10.1111/pbi.13302
https://doi.org/10.1093/jxb/erad156
https://www.ncbi.nlm.nih.gov/pubmed/37137337
https://doi.org/10.3389/fpls.2018.00405
https://www.ncbi.nlm.nih.gov/pubmed/29643863
https://doi.org/10.1007/s12298-022-01273-6
https://www.ncbi.nlm.nih.gov/pubmed/36733839
https://doi.org/10.3389/fpls.2020.01043
https://doi.org/10.1038/s41598-021-83972-w
https://doi.org/10.1093/jxb/erz541


Curr. Issues Mol. Biol. 2024, 46 11120 
 

 
 

 

 
299. Lin, L.; Zhang, X.; Fan, J.; Li, J.; Ren, S.; Gu, X.; Li, P.; Xu, M.; Xu, J.; Lei, W.; et al. Natural Variation in BnaA07.MKK9 Confers 

Resistance to Sclerotinia Stem Rot in Oilseed Rape. Nat. Commun. 2024, 15, 5059. [CrossRef] 

300. Liu, H.; Dong, S.; Gu, F.; Liu, W.; Yang, G.; Huang, M.; Xiao, W.; Liu, Y.; Guo, T.; Wang, H.; et al. NBS-LRR Protein Pik-H4 Interacts 
with OsBIHD1 to Balance Rice Blast Resistance and Growth by Coordinating Ethylene-Brassinosteroid Pathway. Front. Plant Sci. 

2017, 8, 127. [CrossRef] 

301. Wu, D.; Guo, J.; Zhang, Q.; Shi, S.; Guan, W.; Zhou, C.; Chen, R.; Du, B.; Zhu, L.; He, G. Necessity of Rice Resistance to Planthoppers 

for OsEXO70H3 Regulating SAMSL Excretion and Lignin Deposition in Cell Walls. New Phytol. 2022, 234, 1031–1046. [CrossRef] 

302. Zhu, Z.; Yin, J.; Chern, M.; Zhu, X.; Yang, C.; He, K.; Liu, Y.; He, M.; Wang, J.; Song, L.; et al. New Insights into Bsr-d1-mediated 

Broad-spectrum Resistance to Rice Blast. Mol. Plant Pathol. 2020, 21, 951–960. [CrossRef] 

303. Atanasov, K.E.; Liu, C.; Erban, A.; Kopka, J.; Parker, J.E.; Alcázar, R. NLR Mutations Suppressing Immune Hybrid Incompatibility 

and Their Effects on Disease Resistance. Plant Physiol. 2018, 177, 1152–1169. [CrossRef] [PubMed] 

304. Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slamet-Loedin, I.; Č ermák, T.; Voytas, D.F.; Choi, I.; Chadha-Mohanty, P. 
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Abstract: Bananas and plantains are important staple food crops affected by biotic and abiotic 18 
stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats 19 
associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development 20 
of cultivars with high tolerance to stresses. This study sought to develop a protocol for the construc- 21 
tion of vectors for gene knockout. Here we use the phytoene desaturase (PDS) gene as a case study 22 
in Prata-Anã banana by nonhomologous end junction method (NHEJ). PDS is a key gene in the 23 
carotenoid production pathway in plants and its knockout leads to easily visualized phenotypes 24 
such as dwarfism and albinism in plants. Agrobacterium mediated transformation delivered 25 
CRISPR/Cas9 constructs containing gRNAs were inserted into embryogenic cell suspension 26 
cultures. This is the first study to provide an effective method/protocol for constructing gene 27 
knockout vectors demonstrating gene editing potential in a Brazilian banana variety. The 28 
constitutive (CaMV 35S) and root-specific vectors were successfully assembled and confirmed in 29 
transformed Agrobacterium by DNA extraction and PCR.The specificity of transformation protocols 30 
makes it possible to use the CRISPR-Cas9 technique to develop Prata-Anã banana plants with 31 
enhanced tolerance/resistance to major biotic and abiotic factors. 32 

Keywords: Bananas; Phytoene desaturase; CRISPR technology; Vector; Promoter; Prata-Anã; 33 
Knockout. 34 
 35 

1. Introduction 36 

Bananas and plantains are the most widely grown fruits globally owing to their 37 
socioeconomic and nutritional importance. Bananas are one of the main economic 38 
resources in several countries, particularly in South America. In 2023, Brazil ranked fifth 39 
among the world's largest producers, with a production of 6.8 million tons contributing 40 
approximately USD$ 2.0 billion to the fruit agribusiness market. Regarding world 41 
production, approximately 135.1 million tons were produced and harvested on 5.9 million 42 
ha in 2023 [1]. 43 

Banana production is severely restricted by various pathogens, pests, and 44 
environmental factors that can hinder its cultivation [2-4]. Diseases caused by Fusarium 45 
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oxysporum f. sp. cubense (Foc), Mycosphaerella musicola, M. fijiensis, Ralstonia 46 
solanacearum, and banana streak virus (BSV), as well as major pests such as the banana 47 
rhizome borer (Cosmopolites sordidus), and the nematodes Meloidogyne spp. and Radopholus 48 
similis are major challenges for global banana and plantain production [5-7]. Abiotic 49 
stresses, such as water deficit and salinity, also threaten agricultural production 50 
worldwide, reducing yields and impacting plant growth, physiology, and reproduction [8, 51 
9]. Therefore, using banana varieties that are resistant to diseases, pests, water deficit, and 52 
salinity becomes one of the most effective ways to mitigate these negative impacts on fruit 53 
production [10]. In addition, bananas are parthenocarpic fruits, which makes classical 54 
genetic improvement through crosses extremely laborious since parthenocarpy implies in 55 
low seed production.  56 

Genome editing is a tool that allows the manipulation of genetic material to induce 57 
mutations in regions of interest, quickly and precisely, resulting in an organism with a 58 
desirable characteristics. Its application in crop plants has increased interest primarily 59 
because it simplifies regulatory steps [11]. 60 
      Recent advances in new technical tools can potentially accelerate banana plant 61 
breeding to resist main biotic and abiotic factors. The banana genetic breeding program 62 
(BGBP) at Embrapa Cassava and Fruit has been investing in research that provide 63 
molecular tools to support the development of more resistant/tolerant cultivars. One of 64 
these techniques is CRISPR-Cas9 editing [12], which has been successfully used in Musa 65 
spp. [13-15]. 66 

The CRISPR/Cas9 system has been widely used in various plant species to induce 67 
mutations in the genome, allowing the study of gene functions for crop genetic 68 
improvement. This technique enables editing of genome parts by cutting, replacing, or 69 
adding sequences to the DNA of a given genotype [16, 17]. Hence, editing is typically 70 
performed using plasmid vector systems that carry genes, which when integrated into the 71 
host genome can encode the expression of the necessary products such as a nuclease, 72 
typically Cas9, and guide RNA (gRNA). Specific promoters, such as CaMV 35S for 73 
constitutive expression, or tissue-specific promoters are also used to regulate the 74 
expression of CRISPR/Cas components. In addition, the vectors include a transformant 75 
selection marker gene, which confers resistance to antibiotics or herbicides and facilitates 76 
the identification of the transformed cells. Eventually, reporter genes such as β- 77 
glucuronidase (GUS) or Green Fluorescent Protein (GFP) are used to monitor the 78 
efficiency of the transformation [18-21]. 79 

To support the use of CRISPR/Cas9 to increase tolerance for biotic and abiotic stresses 80 
in bananas, we propose the knockout of an easily visible gene, such as phytoene 81 
desaturase (PDS). PDS is one of the limiting enzymes in carotenoid biosynthesis, and 82 
knockout of the PDS gene directly affects photosynthesis, which subsequently leads to 83 
albinism and plant growth retardation [13]. 84 

This albino phenotype caused by the knockout of the PDS gene is easy to visualize 85 
and this step, called proof of concept, is critical to start a case study and identify any bot- 86 
tlenecks in the use of CRISPR-Cas9 technology in plants. The proof of concept with gene 87 
editing (CRISPR/Cas9) in banana is unprecedented in Brazil, but some work has already 88 
been conducted in other countries as a way of evaluating/efficient the technique [13, 14, 89 
22]. Here, we developed an efficient CRISPR/Cas9 vector construction protocol in banana 90 
using gRNAs for the phytoene desaturase (PDS) gene. The two CRISPR/Cas9 constructs 91 
developed, one with a constitutive promoter and the other with a root-specific promoter, 92 
were delivered in embryogenic cell suspension cultures of the banana cultivar Prata-Anã 93 
(AAB). This is the first work with gene editing using this cultivar, the main banana variety 94 
planted in Brazil. 95 

2. Materials and Methods 96 

2.1 Plant material  97 
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Suspensions of embryogenic cells from the male inflorescence of the banana cultivar 98 
Prata-Anã (AAB) [23] were used as explant sources for genetic transformation via 99 
CRISPR-Cas9. The cells were grown and kept in the dark at 27 ± 2 °C on an orbital shaker 100 
at 120 rpm and subcultured every 10 days for maintenance at the Plant Tissue Culture 101 
Laboratory of Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil 102 
(12°40′48.03″S and 39°05′20.91″W). The Prata-Anã cultivar was selected since it is the main 103 
banana variety planted and cosumed by Brazilians, however, it is susceptible to Fusarium 104 
wilt (Foc) and water deficit. 105 

2.2 Identification of the PDS gene in banana and design of gRNAs 106 
To search for the PDS gene in bananas, the complete genome sequences of Musa 107 

acuminata (Ma08_t16510.2) and Musa balbisiana (Mba08_g16040.1) were downloaded from 108 
the SouthGreen-Banana Genome Hub database (https://banana-genome- 109 
hub.southgreen.fr/). After identifying the conserved PDS regions of M. acuminata and M. 110 
balbisiana, specific primers of the banana PDS gene [15, 24] were used to rule out allelic 111 
variations in the target sites in the cultivars used in our study, and a fragments of 994 bp, 112 
2166 bp, and 332 bp of the PDS gene, were sequenced. Genomic DNA was extracted from 113 
the leaves of the Bucaneiro (AA), Zebrina (AA), and Prata-Anã (AAB) genotypes, as 114 
described in Doyle and Doyle (1990) [25], with modifications proposed by Ferreira et al. 115 
(2019) [26]. The bands of interest were identified, selected, and purified using the 116 
PureLinkTM Quick Gel Extraction Kit (Thermo Fisher Scientific, Waltham, MA, USA). 117 

 The coding sequences (CDS) from the pair-end sequencing of the PDS genes of the 118 
Bucaneiro (AA), Zebrina (AA), and Prata-Anã (AAB) banana genotypes were aligned 119 
using the Seqassem software (SeqAssm, Sequentix, Klein Raden, Germany) [27] and then 120 
aligned with the sequences of the PDS gene of M. acuminata and M. balbisiana using the 121 
Clustal Omega software (Clustal Omega, version 1.2.2, EMBL-EBI, Hinxton, 122 
Cambridgeshire, UK) to identify conserved regions.  123 

Subsequently, for the design of the gRNAs, the sequences resulting from the 124 
alignment were selected based on the positioning of the PAM sequence (Proto-spacer 125 
Adjacent Motif 5'-NGG-3); the PAM sequence is required for recognition by the Cas9 126 
endonuclease. The gRNA off-target analysis was carried out by comparing the 20 nt 127 
gRNA target sequences in the PDS gene with the M. acuminata and M. balbisiana gene 128 
sequences using BLASTN (https://www.ncbi.nlm.nih.gov/) from the SouthGreen-Banana 129 
Genome Hub platform and the CRISPOR software (http://crispor.tefor.net/) which also 130 
look into consideration the intrisic clivage pattern of the Cas. 131 

2.3 Construction of CRISPR/Cas9 vectors 132 
 The construction of the vectors considered the available information on 133 

promoter regions, terminators, and restriction enzyme sites: LB (left border), 35S, U6, T7, 134 
Cas9, and RB (right border), of twelve pre-existing vectors, and the sequences that were 135 
most repeated among the selected vectors were considered to be conserved and used to 136 
assemble the new vectors, V1 and V2  (V1: with  the constitutive promoter_CaMV35s and 137 
V2: Musa spp. root-specific promoter – Prom_Musa_Embrapa_005).  138 

 The first vector had a CaMV 35S promoter and four parts (Part 1 + Part 2 + Cas9 139 
+ Part 3) (Table 1). The second vector has a patented banana root-specific promoter 140 
(Prom_Musa_Embrapa_005 - patent number: BR 10 2023 010195 0) and is also made up of 141 
4 fragments (Part 1 + Part 4 + Cas9 + Part 3) (Table 1). To construct the binary plant 142 
transformation vectors containing Cas9 genes, gRNA, and the other parts, a pDIRECT- 143 
22C vector was used. The vectors were designed in the Benchling online software, 144 
available at https://www.benchling.com/crispr (acessed on 16 Febrary 2024) to obtain 145 
vector maps and restriction enzyme predictions for digestion and validation. 146 

Table 1. Composition of the parts used in constructing the CRISPR/Cas 35S vectors and the specific 147 
banana root promoter. 148 
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 Construction of CRISPR/Cas9 vectors CRISPR/Cas9 

Parts Composition 

Part 1 LB_U6 promoter_gRNA BsaI_U6 gene termination signal 

Part 2 35s_T7_promoter_constitutive (gRNA with U6 promoter) 

Part 3 OCS 3’ terminator + RB 

Part 4 35s + T7 + gRNA with U6 promoter (promoter banana) 

Cas9 Bba_K1218011 

       LB = left border, RB = Right border, U6: RNA polymerase III; T7: expression - gRNA, OCS: terminator  149 

The vectors were assembled using the manual Master Mix from the GeneArt™ 150 
Gibson Assembly® HiFi kit (Invitrogen/ThermoFisher), which allows several DNA 151 
fragments to be joined in a single isothermal reaction.  152 

 153 
2.4 Transformation and validation of CRISPR/Cas constructs/vectors in Escherichia coli and 154 
assembly by Gibson Assembly 155 

To make the E. coli DB3.1 and DH5-α cells competent, they were inoculated into 156 
liquid Luria-Bertani (LB) culture medium and incubated at 37 °C overnight under 150 rpm 157 
agitation. The culture was centrifuged at 5000 rpm for 5 min, the supernatant was 158 
discarded, and the pellet obtained was resuspended in 1 mL of 0.1M CaCl2. After this 159 
process, the material was centrifuged at 5000 rpm for 5 min (4 °C), the supernatant was 160 
discarded, and the pellet was resuspended in 150 µL of 0.1M CaCl2. 161 

After making the cells competent, the parts of the vector were transformed into E. coli 162 
by heat shock. For each part, 3 µL of the vector containing the respective fragment was 163 
added to a 50 µL aliquot of competent cells, which were kept on ice for 30 min. After this 164 
period, the inoculum was subjected to a temperature of 42 °C for 45 s. The sample was 165 
immediately returned to the ice for 5 min. 1 mL of LB medium without antibiotics was 166 
added, and the tube was incubated at 37°C (150 rpm) for approximately 1 h. The material 167 
was then centrifuged for 5 min at 5000 rpm, the pellet resuspended in 50 µL of the 168 
supernatant and plated on solid LB medium plus kanamycin (50 mg/mL) [28]. 169 

Transformed E. coli cells were confirmed by extracting plasmid DNA and digesting 170 
the parts of the vectors. For Part 1, the restriction enzymes XbaI and HindIII were used. 171 
For Part 2, the PvuII enzyme was used, the Cas9 was digested with EcoRV and the 172 
pDIRECT-22C vector with the NheI and KpnI enzymes. Digestions were carried out 173 
according to each manufacturer's instructions. Once digested, excised, and purified, all 174 
parts were quantified and followed the Gibson assembly protocol. The two assembled 175 
constructs were transformed in E. coli DH5-α using 3 μL of the Gibson Assembly reaction 176 
and again confirmed through DNA extraction and PCR.  177 

2.5 Transformation/transfection and validation in Agrobacterium  178 
The protocol for transforming Agrobacterium tumefaciens by electroporation was 179 

adapted from Höfgen and Willmitzer (1988) [29] and standardized under the conditions 180 
described in this section. 181 

To prepare competent cells, 1 mL of A. tumefaciens culture grown overnight was 182 
inoculated into 1 L of LB medium and incubated at 30°C under agitation. Cell growth was 183 
observed until the logarithmic phase (OD600 0.5–0.6), pelleted by centrifugation at 2600 xg 184 
for 10 min at 25°C. The pellet was resuspended in 10 mL of ice-cold 10% glycerol and 185 
centrifuged again. The 500 µL of 10% glycerol was added to the new pellet, and the 186 
competent cells were distributed in 50 μL aliquots. The bacteria were plated on a selective 187 
LB medium containing kanamycin (50 mg/mL).  188 

A 3 μL (100–200 ng) of plasmid DNA extracted from transformed E. coli DH5-α was 189 
added to 50 μL of Agrobacterium competent cells and gently homogenized to transform 190 
the two constructs. The cells were transferred to an electroporation cuvette (2 mm) and 191 
taken to the electroporator, where 2.5 kV, 25 μF, and 400 Ω pulses were applied. A 1 mL 192 
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Super Optimal Medium with Catabolic Repressor (SOC) was immediately added. The 193 
material was transferred to microtubes and kept on a shaker at 200 rpm for 2–3 h at 30 °C. 194 
Subsequently, it was centrifuged and resuspended in 100 μL of its supernatant, plated on 195 
solid LB medium with kanamycin (50 mg/mL) and kept at 28 °C for 42–72 h. Confirmation 196 
of Agrobacterium transformant cells was carried out via plasmid DNA extraction and PCR 197 
using vector-specific primers. 198 

2.6 Confirmation of the integration of CRISPR/Cas constructs 199 
For plasmid DNA extraction, 5 mL of the Agrobacterium inoculum was centrifuged at 200 

10000 rpm for 2 min, the supernatant was discarded and 200 μL of ice-cold solution I 201 
(Table S1) and 10 mg/mL RNAse at 10% v/v, were added. The material was incubated for 202 
10 min at room temperature. After this period, 200 μL of ice-cold solution II (Table S1) 203 
was added. The tubes were gently homogenized and kept on ice for 5 min. Subsequently, 204 
200 μL of ice-cold solution III (Table S1) was added, and the tubes were gently 205 
homogenized and kept on ice for 5 min. The material was centrifuged at 10000 rpm for 10 206 
min, and 400 μL of the supernatant was collected and poured into new microtubes. 207 
Briefly, 800 μL of ice-cold isopropanol was added, homogenized, and samples kept at -20 208 
°C for at least 1 h.  209 

After this period, it was centrifuged at 10000 rpm for 15 min, and the supernatant 210 
was discarded. Ice-cold 70% ethanol (500 µL) was added to the pellet, the sample was 211 
centrifuged at 10000 rpm for 15 min, and the supernatant was discarded. The pellet 212 
remained at room temperature (or in a dry bath at 45 °C), followed by resuspension in 213 
approximately 20 μL of nuclease-free water and kept in a freezer (-20 °C). DNA 214 
quantification was performed on Quibit and 1% agarose gels in TAE 1X (adapted from 215 
Sambrook et al., 1989). 216 

Plasmid DNA extracted from Agrobacterium tumefaciens transformed with constructs 217 
1 and 2 was subjected to PCR using primers Vc9_Fw and Vc9_Rv, as well as Vp3C9_Fw 218 
and Vp3C9_Rv (Table 2), to confirm parts 1, 2, 3, 4, vector, and Cas9.  219 

Table 2. Specific primers for confirmation of constructs 1 and 2 assembled by Gibson Assembly after 220 
transformation in Agrobacterium tumefaciens.   221 

Name Seq 5’-3’ pb %GC Ta Amplicon 

Vc9_Fw CTACCCTCCGCGAGATCATC 20 60% 45°C 1912pb C1 

Vc9_Rv CGACCTCATCCACAATGTTGC 21 52.4% 45°C 1587pb C2 

Vp3C9_Fw GCGTTACCTTCCAAATACGTG 21 47.6% 51°C 988pb 

Vp3C9_Rv CGCACGGTGAAACAGAAC 18 55.6% 51°C 988pb 

The samples were amplified in a Veriti thermal cycler (Applied Biosystems, 222 
Waltham, MA, USA) with programming adapted from Cellco (Cellco Inc., Germantown, 223 
MD, USA). The primer sequences and annealing temperatures are shown in Table 2. The 224 
amplification products were separated through electrophoresis on a 1% agarose gel at 70 225 
V in TAE buffer for 45 min in ethidium bromide. They were then visualized and 226 
photographed under ultraviolet light on an L-Pix Touch documentation system (Loccus, 227 
Cotia, Brazil). 228 

2.7 Delivery of the CRISPR/Cas9 plasmid to Prata-Anã cells in suspension. 229 
The plant embryogenic cell suspension culture (ECS) was diluted to 33% (v/v) in 230 

liquid Dichlorophenoxyacetic acid (2, 4-D) medium supplemented with acetosyringone 231 
(AS) 200 μM. The four treatments were arranged in 24-well plates. For treatment 1 (T1), 232 
200 μL plant cell (PC) and 1 mL liquid 2,4-D culture medium were added. For treatment 233 
2 (T2), 200 μL of PC and 1 mL of Agrobacterium (OD600; 1.2un) with empty vector was added. 234 
Treatment 3 (T3) involved addition of 200 μL PC and 1 mL of Agrobacterium transfected 235 
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with construct 1 (V1_CaMV35s), whereas treatment 4 (T4) involved addition of 200 μL PC 236 
and 1 mL of Agrobacterium with construct 2 (V2_Musa_root specific promoter).  237 

The plates were incubated for 6 h at 25 °C and 25 rpm on a rotary shaker in the dark. 238 
The mixture of plant and bacterial cells was transferred to a sterile 50 μm polyester mesh 239 
(4 cm2) deposited on three sterile filter papers to remove excess liquid medium. The 240 
polyester membrane containing the cells was transferred to co-cultivation plates 241 
containing 10 mL of solid 2, 4-D medium (pH 5.3) supplemented with AS and incubated 242 
at 26 °C in the dark for 6 days.  243 

After this period, the membranes were transferred to plates with solid 2, 4-D culture 244 
medium supplemented with timentin (200 mg/L) and kanamycin (50 mg/mL) and 245 
incubated in the dark at 25 ± 2 °C for 30 days. The membranes were then transferred to 246 
BAP (6-benzylaminopurine) + AIA (indoleacetic acid) medium, plus timentin and 247 
kanamycin, where they remained for 15 days in the dark at 25 ± 2 °C temperature. The 248 
plates were transferred to a 16 h/8 h photoperiod at 25 °C and subcultured every 30 days 249 
if necessary. 250 

3. Results 251 
3.1 Design of the gRNAs 252 

By aligning the CDS resulting from the sequencing of the PDS genes of the Bucaneiro 253 
(AA), Zebrina (AA), and Prata-Anã (AAB) banana genotypes with the PDS gene 254 
sequences of M. acuminata (Genome A) and M. balbisiana (Genome B), the gRNAs could 255 
be selected. The off-target activity of the four gRNAs was assessed using BLASTN on the 256 
SouthGreen-Banana Genome Hub platform. All the gRNAs showed 95% nucleotide 257 
homology with the banana PDS gene (Figure 1).  258 

 259 
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Figure 1. Partial alignment resulting from the sequencing of the PDS genes of the banana genotypes 260 
Bucaneiro (AA), Zebrina (AA), and Prata-Anã (AAB) and sequences of the PDS gene of Musa 261 
acuminata and Musa balbisiana for gRNA design. The blue arrows indicate the selected gRNAs. 262 
Yellow highlights represent the gRNA nucleotides, and green highlights indicate the PAM 263 
sequences. 264 

Two gRNAs were selected (indicated by blue arrows) to maximize the chances of 265 
mutations and deletion of large fragments as the gRNAs targets two different exons of the 266 
PDS gene in Prata-Anã, which contains both genomes (genome A and B). The gRNA1 267 
(GAACTGATGATTTTAGAACTGG) and gRNA2 (GACCAATTTATAATTTTTTGG) were integrated 268 
into the constructs. 269 

3.2. Construction of CRISPR/Cas vectors 270 
The parts of the constructs (Part1_LB_U6pro_sgRNABsaI_U6term; 271 

Part2_35s_T7_promotor_const; Part3_OCSterm_RB; Part4_35s_T7_promotor; Cas9) were 272 
synthesized, the sequences in common with various vectors were compared, and those 273 
with the highest level of conservation were selected to create the new vectors. 274 

After selecting the sequences and constructing the parts, the maps of the vectors 275 
(Figure 2) for gene editing in bananas via Agrobacterium transformation were drawn up. 276 
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 277 

Figure 2: Maps of the vectors with CaMV 35S promoter and Part 1 + Part 2 + PCR Cas9 + Part 3 + 278 
Vector pDIRECT-22C (A) and vector with root-specific promoter with Part 1 + Part 4 + PCR Cas9 + 279 
Part 3 + Vector pDIRECT-22C (B) for use in banana cisgenesis via Agrobacterium transformation. The 280 
outer part of the vector contains the possible restriction enzymes for digesting the vectors. 281 

3.3. Standardization of protocol for processing and digestion of parts  282 
The competence of E. coli DB3.1 and DH5a and transformation by heat shock were 283 

standardized and confirmed by DNA extraction and digestion of the parts. Parts 1, 2, 3, 4, 284 
and Cas9 were transformed into E. coli DH5-α and pDIRECT-22C into E. coli DB3.1 to 285 
multiply the plasmids. The transformant colonies underwent a plasmid DNA extraction 286 
process (miniprep). The Part 1 miniprep was digested with the restriction enzymes XbaI 287 
(Cellco) and HindIII (Promega), and a 699 bp fragment was released (Figure 3). The Part 288 
2 miniprep was digested with the restriction enzyme PvuII (Jena Bioscience), releasing a 289 
fragment of 697 bp (Figure 3).  290 
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Cas9 is one of the essential parts for Gibson's assembly of the vector and is largely 291 
responsible for the functioning of the CRISPR/Cas system. After transformation and 292 
selection in a medium containing the antibiotic kanamycin (50 mg/mL), plasmid DNA 293 
was extracted and digested by the EcoRV restriction enzyme, resulting in the release of a 294 
5115pb fragment (Figure 3). 295 

The pDIRECT-22C vector is also an important element for assembling the vector of 296 
interest by Gibson Assembly, as it contains overlap and is widely used for gene expression 297 
in plants. This vector contains a gene for resistance to the antibiotic kanamycin. Therefore, 298 
it was also transformed into E. coli DB3.1 and selected in a culture medium containing the 299 
antibiotic kanamycin (50 mg/mL). Plasmid DNA was extracted, and the resulting sample 300 
was digested using the restriction enzymes NheI and KpnI (Cellco), releasing a 5400 bp 301 
fragment (Figure 3), which, like the other fragments, was excised and purified. 302 

Parts 3 and 4 were not cloned in the vector; hence, digesting and purifying them was 303 
not necessary; they were just resuspended in 20 μL of nuclease-free water to a final 304 
concentration of 25 ng/μL. 305 

 306 

Figure 3: Digestion of the parts and vectors of interest in Gibson Assembly. Mw: 1 kB Plus NeoBio 307 
molecular weight marker (CV-1000 kB); 1: miniprep from part 1 (undigested control); 2: 699 bp 308 
fragment excised from part 1; 3: miniprep from part 2 (undigested control); 4 and 5: 697 bp fragments 309 
excised from part 2; 6: Cas9 miniprep in pUC57 (undigested control); 7 and 8: 5115 bp fragments 310 
excised from Cas9; 9: pDIRECT-22C vector miniprep (undigested control); 10, 11, and 12: 5400 bp 311 
fragments excised from pDIRECT-22C.  312 

3.4. Quantification of vector parts and assembly by Gibson Assembly 313 
Parts 1, 2, 3 and 4, previously digested, excised and purified Cas9 and pDIRECT-22C, 314 

were assayed by fluorimetric quantification using a Qubit 4 fluorometer according to the 315 
manufacturer's protocol. 316 

The assembly protocol suggests a concentration of 0.08 pmols of each of the inserts 317 
in the reaction. To assemble the Gibson Assembly, the necessary amount, in μL, of each 318 
part was calculated (Table 3), combining these fragments in a single enzymatic reaction. 319 
Accurate quantification and the use of the correct molar proportions between the 320 
fragments and the vector are critical for the efficient assembly by Gibson Assembly. 321 

3.5. Transformation and confirmation of constructs in Agrobacterium tumefaciens 322 

After standardizing and confirming the protocol developed, the two assembled 323 
constructs (V1_CaMV35s and V2_Musa_Root) were transformed into Agrobacterium using 324 
approximately 3 μL (100–200 ng) of plasmid DNA extracted from the transforming E. coli 325 
strains previously selected for kanamycin resistance and through the electroporation 326 
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transformation protocol. The constructs were confirmed through DNA extraction (Figure 327 
4) and PCR (Figure 5). 328 

 329 

Figure 4: Extraction of plasmid DNA from the constructs inserted into Agrobacterium tumefaciens. M: 330 
molecular weight marker 1kB DNA Ladder - MMK-105S (Cellco); 1 and 2: amplicons with more than 331 
10000 bp equivalent to construct 1 (a) and 2 (b). 332 

 333 

Figure 5 PCR amplification of the Agobacterium tumefaciens strain transformed with constructs 1 and 334 
2. (a) PCR with primer set VC9_Fw and VC9_Rv (M: molecular weight marker 1kB Plus DNA Ladder 335 
- MMK-130S (Cellco); C(-): negative control of the reaction with water; 1 and 2: 1912 bp amplicons at 336 
45 °C for constructs 1 and 2. (b) PCR for primers Vp3C9_Fw and Vp3C9_Rv; M: marker; C(-): 337 
negative control; 1 and 2: 1000 bp amplicons at 51 °C. 338 

3.6. Delivery of the CRISPR/Cas9 plasmid in banana cv. Prata-Anã 339 

Mutants were generated by delivering the two CRISPR/Cas9 constructs 340 
(V1_CaMV35s and V2_Musa_Raiz) into a suspension of embryogenic cells from the Prata- 341 
Anã (AAB) cultivar using transformation via Agrobacterium. The treatments were 342 
organized into 24-well plates, with treatments comprising as follows: T1 consisting of the 343 
plant cell (PC) and liquid 2,4-D culture medium; T2 consisting of PC and empty vector; 344 
T3 consisting of PC and Construction 1; and T4 consisting of PC and Construction 2 345 
(Figure 6). 346 
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 347 

Figure 6. Process of genetic transformation and regeneration of the Prata-Anã banana. (a) 348 
Embryogenic cell suspension used for transformation with the CRISPR/Cas9 plasmid; (b) embryos 349 
in 2, 4-D culture medium and transforming Agrobacterium; (c) embryos in polyester membrane and 350 
2, 4-D+AS culture medium (T1) after 0 days and the different treatments (d, e, f, g) with 351 
BAP+AIA+Kan+Timentin culture medium (d: T1, e: T2, f: T3, g: T4) after 70 days of transformation, 352 
kept at 25 °C with a 16 h/8 h photoperiod. 353 

The germinating plant cells were transferred to jars or test tubes with solid BAP + 354 
AIA medium for regeneration. 355 

4. Discussion 356 

Banana production is severely affected by biotic and abiotic factors. Among the 357 
biotic factors, fusarium wilt (STR4 and TR4) is the most destructive. Considering abiotic 358 
factors, water deficit, also brought by climate changes, not only leads to losses in 359 
production, but also contributes to intensify biotic stresses already at play [30]. Given this 360 
scenario, adequate technologies are essential to develop new banana genotypes endowed 361 
with durable and broad-spectrum tolerance or resistance. Traditional breeding cannot 362 
always produce new genotypes that deal with rapid changes. In the case of banana plants, 363 
classical breeding is even more time-consuming owing to the inherent parthenocarpy of 364 
the species, which leads to low seed production.  365 

 Gene editing technology makes it possible to modify the target DNA at a specific 366 
location precisely and quickly, inducing specific genetic variations but maintaining the 367 
genetic identity of elite cultivars [31, 32]. Developing well-defined methods and protocols 368 
using this technology allows reproducibility, consistency and reliability, versatility, 369 
minimization of editing errors, facilitation of systems delivery to the site of interest, and 370 
promotion of resource savings.  371 

CRISPR/Cas vector systems are well-designed genetic constructs made up of a Cas9 372 
enzyme or its variants, such as Cas12a (Cpf1), Cas13, and others, responsible for cleaving 373 
the DNA and RNA respectively at the site of interest, which allows for precise editing, as 374 
well as a guide RNA that directs the enzyme to the target of the mutation. The system also 375 
includes promoters that can be constitutive, tissue-specific, or inducible; insertion 376 
sequences, selection markers, cloning, and replication elements are also part of this system 377 
[33-35].  378 

The 35S promoter from the cauliflower mosaic virus (CaMV 35S) is widely used in 379 
plants to ensure the continuous expression of genes that regulate all cell types. Its 380 
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application is well reported in several crops such as rice [36-39], tomato [40, 41], and 381 
soybean [42, 43], with successful cases for the expression of Cas9. However, tissue-specific 382 
promoters are activated only in the designated tissues or at specific moments in 383 
development, with precise regulation of expression, reducing the chances of off-target 384 
mutations and the involvement of other tissues [44, 45]. 385 

Krasnyanski et al. (2001) [46] used two promoters derived from a binary vector to 386 
transform tomatoes. The uidA gene was driven by the CaMV 35S/AMV or the E-8 387 
promoter specific for fruit ripening. The authors successfully expressed the gene with both 388 
promoters, and the specific promoter was not expressed in other tissues, only in the fruit. 389 

Although the CaMV 35S promoter is widely used, growing efforts are needed to 390 
explore tissue-specific promoters to achieve more efficient and targeted expression. This 391 
study developed two vectors using the CaMV 35S promoter and the root-specific 392 
promoter (Prom_Musa_Embrapa_005 - patent number: BR 10 2023 010195 0). The root- 393 
specific promoter only activates the transcription of genes locally in root cells, ensuring 394 
that their essential functions, such as nutrient and water absorption, hormone production, 395 
substance transport, food storage, interaction with microorganisms and other functions, 396 
are performed optimally [33, 47]. This type of promoter can act by recognizing specific 397 
regulatory elements, interacting with transcription factors, environmental signals or 398 
tissue restriction [48, 49].  399 

Diseases such as Fusarium wilt and nematodes are transmitted through the soil. 400 
Using a root-specific promoter associated with the CRISPR/Cas system offers an 401 
advantage for increasing disease resistance in plants as it is a more precise and efficient 402 
approach to the local defense response. When the system is activated in the roots, genes 403 
related to stress signaling or the synthesis of antimicrobial compounds, such as 404 
phytoalexins and specific proteins, as well as plant hormones, can be expressed and 405 
enable the development of localized resistance, minimizing off-target effects on other 406 
plant structures [48, 33, 44].  407 

In soybean, the GmADR1 promoter was used to direct the expression of the 408 
GmCaM4 gene in root tissues, and the plants showed high resistance to salinity [44]. The 409 
maize Chitinase A1 and Phospholipid transferase promoter (pZmCTA1 and pZmPLTP) were 410 
used to design a specific callus system with beneficial effects on hereditary mutations and 411 
a reduction in somatic mutations [50].  412 

In Arabidopsis and soybean, the GmPRP2 promoter was tested for its expression 413 
pattern, and it was concluded that this is a preferential root promoter and can be used to 414 
improve functions related to plant roots, such as nutrition, tolerance, or resistance to biotic 415 
and abiotic stressors [51]. The TIP2 promoter and 18 other promoter sequences were 416 
evaluated for specificity in banana and Nicotiana tabacum (tobacco) roots. These promoters 417 
could be used in new CRISPR/Cas constructs, expanding the options for controlling 418 
diseases, pests, and other stresses [52].  419 

The use of specific promoters in the CRISPR/Cas system has been explored and their 420 
successful integration into the CRISPR/Cas system, confirmed; the choice of promoters 421 
depend on the tissue to be studied and the objective of the experiment [53, 54]. The authors 422 
successfully confirmed the integration of promoters into a CRISPR/Cas9 system to 423 
facilitate research focused on plant breeding using specific or constitutive promoters for 424 
a better understanding of the mechanisms surrounding the expression of genes of interest 425 
and for validation using transformed plants. 426 

CRISPR/Cas vectors allow the efficient delivery of essential elements such as the Cas 427 
protein, gRNA and other components. The Cas9 protein belongs to type II class II and was 428 
developed from S. pyogenes. Cas9 nucleases are guided by CRISPR RNAs (crRNAs), which 429 
resemble transactivating crRNAs (tracrRNAs) and facilitate the formation of the 430 
ribonucleoprotein complex [34]. However, most Cas9 genome editing applications use the 431 
gRNA molecule, designed by fusing crRNA and tracrRNA into a single RNA molecule. 432 
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In most cases, CRISPR/Cas9 requires a target site of 17 to 20 base pairs (bp) directly 433 
adjacent to a 5'-NGG PAM sequence (motif adjacent to the protospacer) to be effectively 434 
recognized by the gRNA, as used in this study [55, 56]. 435 

Promoters control the delivery of these genes, increasing the precision of gene 436 
editing. Different vectors can be found for different organisms. pCAMBIA is a binary 437 
vector that is widely used owing to its versatility, high efficiency of Agrobacterium 438 
mediated transformation in mono- and dicot species, and easy manipulation in the 439 
laboratory [57, 14]. The authors analyzed several vectors already available in the literature 440 
to construct the final vector. The regions to make up the new vector were chosen based on 441 
the degree of homology between the nucleotide sequences of each structure. pCAMBIA 442 
was found in most of the works and has a high degree of conservation, which justifies its 443 
use. 444 

In the present study, the cloning process with the pDIRECT-22C vector and genetic 445 
construction was carried out in E. coli. Once Gibson Assembly had assembled the DNA 446 
vector in an in vitro reaction, the plasmids were transferred to A. tumefaciens. This vector 447 
is often used for cloning, as it supports multiple gRNAs and multiplex manipulation of 448 
genes. It also has antibiotic resistance genes such as kanamycin and ampicillin, for 449 
selection of transformed cells with the vector insert [58, 59].  450 

Various plant transformation methods can be used to apply the CRISPR/Cas system. 451 
The most common is transformation mediated by A. tumefaciens, a bacterium capable of 452 
transferring its genetic material into the plant genome. The method has high efficiency, 453 
stability in delivering transgenes, less physical damage to DNA and can be used in 454 
different species. However, its application in monocots is limited [57, 60, 61]. 455 

Explants are small fragments of living tissue that can be removed from different 456 
parts of a plant, such as roots, stems, and leaves, and play an important role in the 457 
efficiency of transformation [62]. In bananas, stem apices, meristems and male 458 
inflorescences can be used as a source of explants. In this study, we chose to use embryos 459 
from male inflorescences due to the easy regeneration of transformed plants [63, 64]. 460 
When compared to other types of explants, such as leaves or roots, these cells offer a 461 
higher transformation rate and a lower frequency of somaclonal mutations due to their 462 
greater totipotency capacity [65-67]. The efficiency of Agrobacterium mediated 463 
transformation in embryogenic cells can be attributed to their greater cellular competence, 464 
allowing effective integration of the transferred DNA and resulting in more viable 465 
mutants [68, 69]. These data suggest that, although different explants can be successfully 466 
used in genetic transformation, embryogenic cells represent a superior option for 467 
transformation efficiency and plant regeneration, especially for recalcitrant species.  468 

Knockout of the PDS gene in banana plants and other crops using CRISPR/Cas9 469 
technology has been widely studied due to its function as a phenotypic marker of 470 
successful editing. Disruption of this gene causes a loss of function in carotenoid 471 
biosynthesis, resulting in albino plants, which allows direct assessment of transformation 472 
efficiency [15, 42]. Studies conducted on Cavendish banana cultivars used embryogenic 473 
cell suspensions to knock out the PDS gene, resulting in a high regeneration efficiency and 474 
expression of the albino phenotype [14]. These findings reinforce the importance of 475 
properly selecting explants to maximize the success of transformation and gene editing 476 
via CRISPR/Cas in plants. 477 

The development of an efficient protocol for constructing CRISPR/Cas9 systems 478 
using constitutive promoters (such as CaMV 35S) and tissue-specific promoters, followed 479 
by A. tumefaciens-mediated transformation and knockout of the PDS gene in banana, 480 
represents a significant advance in plant biotechnology. This protocol allows precise gene 481 
editing, with the PDS gene acting as a visual marker to confirm the effectiveness of the 482 
editing as its interruption results in an albino phenotype in the plants.  483 

Selecting explants with a high regenerative capacity is essential to ensure efficient 484 
integration of the CRISPR/Cas vector and the regeneration of viable plants. Using 485 
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constitutive promoters ensures broad and continuous expression of the Cas9 486 
endonuclease throughout the plant. In contrast, specific promoters can regulate 487 
expression in target tissues, offering high precision in the edits. This approach highlights 488 
the importance of combining a robust vector construct with the careful selection of 489 
explants and promoters, resulting in an efficient methodology for plant breeding. 490 

5. Conclusions 491 

In this study, we developed a vector construction protocol, validated a construct/ 492 
cassette as a biotechnological product, for knockout of the PDS gene in Prata-Anã banana 493 
using CRISPR/Cas9 technology. This study enables the continuation of recent research 494 
focused on the genetic improvement of bananas against biotic and abiotic stressors, such 495 
as Fusarium wilt and water deficit. The methods used so far to edit genes using 496 
CRISPR/Cas9 technology have proved successful in various crops. The consolidation of a 497 
constitutive and root-specific vector/promoter and the possibility of knocking out the PDS 498 
gene (proof of concept) in the Prata-Anã cultivar is unprecedented in Brazil. The vectors 499 
developed here will be used in future studies to knock out genes for resistance/tolerance 500 
to biotic and abiotic stresses in banana varieties of commercial interest. However, 501 
challenges such as variability in transformation efficiency, possibility of off-target effects, 502 
and limitations imposed by specific PAM sequences still need to be overcome. In the 503 
future, the integration of new endonuclease variants and accessory tools may improve the 504 
performance of the technique. This protocol can be used to optimize other methods of 505 
delivering the components of the CRISPR/Cas system, such as biobalistics, 506 
Ribonucleoproteins (RNPs), and protoplasts (transfection/electroporation), and can be 507 
used in vegetative propagated species for resistance/tolerance to biotic and abiotic factors, 508 
which will also have a significant impact on genetic improvements in agriculture by 509 
addressing the challenges of global food security.  510 
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CONCLUSÃO GERAL 

Esta tese buscou investigar por Revisão Sistemática (RS) o uso da tecnologia CRISPR/Cas na edição 

de genes relacionados a resistência/tolerância a estresses bióticos em plantas nos últimos doze anos. Dados de 

296 estudos realizados em diferentes espécies foram sistematizados e agrupados. Progressos significativos ao 

longo desses anos foram observados, consolidando sua posição como uma ferramenta promissora para o 

melhoramento genético de plantas. A combinação desta tecnologia com vetores bem delineados e 

Agrobacterium destaca a sua eficácia em múltiplas espécies, avançando assim na compreensão dos 

mecanismos de defesa das plantas.  

A possibilidade de diversificação dos métodos de edição genética utilizando outras enzimas como 

Cas12a (Cpf1) e Cas13 ampliam as possibilidades de aplicação em pesquisas futuras. A complexidade dos 

mecanismos de defesa das plantas contra stresses bióticos ainda requer maior investigação, dadas as 

complexas interações entre patógenos e hospedeiros. Portanto, a exploração contínua desta tecnologia, 

combinada com novos conhecimentos sobre redes de defesa vegetal, podem fornecer soluções inovadoras para 

os desafios do stresse biótico e contribuir significativamente para o desenvolvimento agrícola sustentável. 

Embora o uso da tecnologia CRISPR/Cas tenha revolucionado o melhoramento de plantas nos últimos 

anos, ainda há muitos desafios a serem superados, como efeitos fora do alvo, a eficiência da entrega do sistema 

CRISPR em células vegetais, questões éticas e regulatórias, bem como questões ambientais e de 

biossegurança. Muitos estudos estão sendo realizados sobre o assunto, no entanto, existem apenas alguns 

produtos comercializáveis.  

Estudos sobre edição genética com CRISPR/Cas para resistência a agentes bióticos estão apenas 

começando. Os resultados obtidos até agora não só mostram que esta tecnologia oferece modificações precisas 

no genoma da planta e tem sido usada com sucesso para conferir resistência a doenças e pragas, mas também 

são essenciais principalmente para compreender a função de genes relacionados a várias vias de interação 

planta-patógeno e podem atuar na resistência de amplo espectro com base na edição multilocus. 

As informações obtidas a partir da RS foram utilizadas para auxiliar a construção e validação de vetores 

CRISPR/Cas para edição do gene PDS em bananeira. Um protocolo de construção de vetores permite a 

continuação de pesquisas focadas no melhoramento genético de bananas contra estressores bióticos e 

abióticos. Os métodos usados até agora para editar genes usando a tecnologia CRISPR/Cas9 têm se mostrado 

bem-sucedidos em várias culturas.  



 

 

A consolidação de um vetor/promotor constitutivo e específico de raiz e a possibilidade de knockout 

do gene PDS (prova de conceito) na cultivar Prata-Anã é inédita no Brasil. Os vetores aqui desenvolvidos 

serão usados em estudos futuros para knockout de genes para resistência/tolerância a agentes bióticos e 

abióticos em variedades de banana de interesse comercial. Este protocolo pode ser usado para otimizar outros 

métodos de entrega dos componentes do sistema CRISPR/Cas, como biobalística, ribonucleoproteínas (RNPs) 

e protoplastos (transfecção/eletroporação) o que trará um impacto significativo em melhorias genéticas na 

agricultura. 

 

 

 

 

 

 

 

 

 

 

 

 


