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RESUMO 

O estado da Bahia é um dos maiores produtores de recursos minerais do Brasil, graças a 

geodiversidade de seu território, que possibilita a extração de uma grande variedade de tipos 

de minérios. Entretanto, apesar dessa proeminência, o setor de produção mínero-industrial 

para o ferro não contribui significamente para essa posição de destaque, mesmo possuindo 

depósitos potencialmente mineiros, conhecidos através de inúmeros levantamentos 

geológicos efetuados nos últimos 80 anos. O conhecimento científico encontra-se disperso 

nos meios de publicação, enquanto dados quantitativos e qualitativos sobre os depósitos de 

ferro estão indisponíveis, decorrente do valor estratégico para as empresas que investiram 

seus recursos para obtê-los, sendo uma pequena parcela disponibilizada pelos órgãos 

públicos de pesquisa mineral. Dentro deste cenário, estratégias como a bibliometria na 

análise e sistematização de estudos científicos sobre a utilização de sensoriamento remoto 

na avaliação de minérios pode ser promissora em termos da produção de uma análise crucial 

e sistemática da literatura e da concessão de subsídios que conduzam à construção de 

informação sobre o mapeamento de jazidas de minério de ferro. E, novos métodos de 

integração, como os algoritmos de machine learning, apresentam potencial para alcançar 

uma precisão maior na delimitação de zonas de interesse minerário. Desta forma, este 

trabalho tem como objetivo contribuir para o mapeamento de ocorrências de minerais ferrosos 

no estado da Bahia. O estudo está dividido em dois capítulos. O primeiro capítulo consiste 

em uma análise bibliométrica, através de técnicas de mineração de texto, para reconhecer 

padrões na literatura que possam servir de base para analisar estatisticamente os resultados 

dos diferentes estudos sobre o mapeamento de jazidas ferríferas, com o objetivo de avaliar 

as tendências metodológicas nesse campo de atuação. O segundo capítulo trata da aplicação 

de um método de aprendizagem de máquina em imagens de sensoriamento remoto. A 

utilização de dados auxiliares, como pontos de ocorrência mineral, geologia e áreas de 

requerimentos minerários foram utilizados para otimizar o gerenciamento dos resultados e 

permitindo seu uso eficaz como diretriz no processo de pesquisa mineral. Espera-se obter 

um conhecimento do potencial minerário da Bahia em relação aos minérios de ferro, assim 

reforçando a ampla aplicabilidade dos dados de sensoriamento remoto no setor da 

exploração mineral, permitindo classificar uma extensa região de acordo com seu grau de 

aproveitamento econômico, através da análise dos dados disponíveis. 
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ABSTRACT 

 

 

The state of Bahia is one of the largest producers of mineral resources in Brazil, thanks to the 

geodiversity of its territory, which enables the extraction of a wide variety of mineral types. 

However, despite this prominence, the mining-industrial production sector for iron does not 

contribute significantly to this prominent position, even though it has potentially minable 

deposits, known through countless geological surveys carried out in the last 80 years. The 

scientific knowledge is dispersed in the means of publication, while quantitative and qualitative 

data about the iron deposits are unavailable, due to the strategic value for the companies that 

have invested their resources to obtain them, and a small part is made available by the public 

organs of mineral research. Within this scenario, strategies such as bibliometry in the analysis 

and systematization of scientific studies on the use of remote sensing in ore evaluation may 

be promising in terms of producing a crucial and systematic analysis of the literature and 

providing subsidies that lead to the construction of information on the mapping of iron ore 

deposits. And, new integration methods, such as machine learning algorithms, have the 

potential to achieve greater accuracy in delineating areas of mining interest. Thus, this work 

aims to contribute to the mapping of ferrous mineral occurrences in the state of Bahia. The 

study is divided into two chapters. The first chapter consists of a bibliometric analysis, through 

text mining techniques, to recognize patterns in the literature that can serve as a basis for 

statistically analyzing the results of different studies on the mapping of ferrous deposits, to 

evaluate methodological trends in this field of action. The second chapter deals with the 

application of a machine learning method to remote sensing images. The use of auxiliary data, 

such as mineral occurrence points, geology and mining requirement areas were used to 

optimize the management of the results and allowing their effective use as a guideline in the 

mineral research process. 
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Capítulo I 

 

1.1 INTRODUÇÃO 

 

Desde a Idade Antiga, o desenvolvimento da humanidade esteve interligado 

aos materiais metálicos, especificamente os minerais ferríferos, pelos seus aspectos 

industriais. A ampla utilização do ferro pela civilização, substituindo o bronze que era, 

até então, a liga metálica mais utilizada na época, iniciou a partir de 1200 A.C, 

conhecida comumente como a Idade do Ferro. Segundo Navarro (2006), essa 

mudança ocorreu por ser uma substância relativamente abundante, mais fácil de 

manipular do que o cobre e o estanho e gerava produtos de qualidade superior. Ainda 

hoje, o ferro é um dos metais mais demandados mundialmente, como principal 

componente para fabricação do aço, liga metálica presente em diversos segmentos 

de objetos. 

O Brasil, atualmente, é o segundo maior produtor mundial de minério de ferro, 

responsável por 16% das exportações da indústria extrativa do mineral (BRASIL, 

2022). Os principais estados produtores são Minas Gerais e Pará que, juntos, 

correspondem a 98% da produção de minério de ferro nacional. Os 2% restantes 

estão divididos entre os estados de Mato Grosso do Sul, Bahia, Goiás, Maranhão, 

Ceará e Rio Grande do Norte. 

O estado da Bahia é o quarto maior produtor de ferro do país com um valor de, 

aproximadamente, 0,016% do total de ferro produzido no país (SDE, 2022). A reserva 

mais significativa do estado está associada as sequências 

metavulcanossedimentares arqueanas /paleoproterozóicas próximo ao município de 

Caetité (Alkmim et al., 2007), onde a mais expressiva ocorrência está localizada na 

Mina Pedra de Ferro (Bamin Mineração), maior mina de ferro em operação do estado, 

com 948 milhões de toneladas certificados e teores de até 62%. Outra importante 

reserva compreende as formações ferríferas do Complexo Santa Luz, onde está 

localizada a Mina Jacuípe (Ferrous Resources do Brasil), próximo do município de 

Coração de Maria, com 1,12 bilhão de toneladas certificadas e teor médio de 27,22%. 
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Entretanto, ao analisar o histórico da exploração e pesquisa de ferro na Bahia 

(Leonardos, 1937; Santana et al., 1974; Souza et al., 1979), pode-se inferir que o 

potencial metalogenético ferrífero do estado é ainda maior. Um levantamento 

realizado pela Companhia Baiana de Pesquisa Mineral (CBPM) (Ribeiro, 2017), 

estimou que existem pelo menos 12,5 bilhões de toneladas de ferro ainda não 

explorados, distribuídos em pelo menos cinco distritos ferríferos no estado (Figura 1), 

a exemplo das formações ferríferas bandadas do Complexo Colomi, localizados nos 

municípios de Sento Sé e Remanso, ao norte do estado, com 5 bilhões de toneladas 

estimados e teores variando entre 26% e 66%. 

 

Figura 1 – Distritos ferríferos do estado da Bahia segundo Ribeiro (2017). 1) Distrito do Sudoeste 
da Bahia (Depósitos de Caetité-Brumado. Certificados: 948Mt / Estimados 5,21Bt - teores entre 32% e 
62%). 2) Distrito do Médio São Francisco (Depósitos de Xique-Xique. Estimados: 430Mt - teor médio: 
24,8%). 3) Distrito Sudeste da Bahia (Depósitos de Iguaí-Jequié. Estimados 513Mt - teores entre 29% 
e 39%). 4) Distrito do Recôncavo (Depósitos de Coração de Maria-Conceição do Jacuípe. Estimados 
1,13Bt - teor médio 27,7%). 5) Distrito do Norte da Bahia (Depósitos de Campo Alegre de Lourdes). 
Estimados 5,0Bt - teores entre 26% e 66%). 
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Desde a crise da economia causada pela pandemia do Covid-19, países como 

a China, antes consumidora de cerca de 70% do ferro mundial (Thorne, 2020), 

aumentaram significativamente a demanda pelo metal no processo de recuperação 

econômica, tornando o momento oportuno para a descoberta de novas jazidas. 

A partir do entendimento da dimensão da problemática da demanda por 

recursos minerais, existe uma busca da sociedade científica por métodos e técnicas 

capazes de diagnosticar e identificar os depósitos minerais com maior precisão, 

dentre as quais o Sensoriamento Remoto, que possui ferramental de grande 

notoriedade. Sensoriamento remoto corresponde ao conjunto de técnicas que 

objetivam medir as características físicas de um objeto sem tocá-lo (Silva, 2003). A 

interpretação de imagens de sensores remotos fundamenta-se, basicamente, na 

análise do comportamento da reflectância espectral dos materiais. 

Para a execução desse trabalho, é proposta a organização em dois capítulos 

com formato de artigos científicos. O primeiro capítulo consiste na revisão 

bibliográfica através do levantamento e análise de publicações cientificas e artigos de 

referência sobre o sensoriamento remoto aplicadas ao mapeamento superficial de 

minerais metálicos. Espera-se identificar na literatura as tendências metodológicas e 

os avanços conceituais na abordagem da temática ao longo do tempo. Essa etapa é 

importante porque fornece uma base para os próximos capítulos, à medida que 

direciona os estudos, com base nos principais indicadores e técnicas mais utilizadas 

no mundo. A metodologia desse capítulo fundamenta-se na utilização da base de 

dados Scopus, para gerar dados quantitativos e qualitativos em forma de redes de 

correlação, tabelas e gráficos.  

O segundo capítulo objetiva mapear áreas com potencialidade para 

prospecção mineral de ferro em toda extensão do estado da Bahia com a seleção dos 

sensores, fontes de dados e integração com métodos de Machine Learning baseados 

na disponibilidade das informações. Dentre os dados acessíveis, estão coleções de 

imagens do sensor Sentinel-2, disponível na plataforma Google Earth Engine (Gorelik 

et al, 2017), assim como o poder de processamento de computação em nuvem da 

Google Cloud. Como datasets de treinamento e validação, informações de mapas de 

referências como a geologia e geodiversidade estão disponíveis no Serviço Geológico 

Brasileiro (CPRM). Na Companhia Baiana de Pesquisa Mineral (CBPM), pode-se 
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obter a localização geográfica de mineralizações de ferro em áreas de ocorrência já 

conhecidas. Etapas de campo em áreas de ocorrência de ferro conhecidas, dentro 

dos distritos ferríferos delimitados pelos trabalhos de Santana et al. (2017), para 

coleta de amostras, podem fornecer dados de assinatura espectral dos minérios de 

ferro. 

Espera-se, com este trabalho, ao responder as seguintes perguntas 

norteadoras: Quais são as bases de dados de dados de sensoriamento remoto que 

fornecem os melhores vetores para prospecção mineral? Quais os sensores que 

apresentam maior potencial para identificar formações ferríferas? É possível 

identificar, com uma certa precisão, rochas mineralizadas em ferro em todo o território 

baiano, com a integração desses dados por meio de técnicas de Machine Learning? 

 

1.2 OBJETIVO GERAL 

Avaliar as ferramentas para geração de vetores na exploração mineral para 

ferro, por meio da análise bibliométrica, no intuito de desenvolver um modelo de 

potencialidade mineral com base em dados de sensoriamento remoto e métodos 

tecnológicos processados em nuvem. 

 

1.3 OBJETIVOS ESPECÍFICOS 

  

● Identificar publicações de maior referência em pesquisa de ferro 

● Definir uma base de dados para o modelo de potencialidade para ferro. 

● Definir datasets de treinamento e de validação para identificar padrões 

espectrais dos minérios de ferro. 

● Aplicar o modelo de potencialidade na identificação de novos alvos de ferro no 

Estado da Bahia e validação do modelo. 
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Capítulo II  

 

APLICAÇÕES GEOLÓGICAS DE SENSORIAMENTO REMOTO NA PESQUISA 
DO POTENCIAL MINERAL PARA FERRO: UMA ANÁLISE BIBLIOMÉTRICA. 

 

 

 

2.1 INTRODUÇÃO  

 

A pesquisa mineral corresponde a um campo da geologia responsável pelo 

mapeamento geológico de substâncias minerais economicamente relevantes de 

acordo com o seu aproveitamento industrial (Brasil, 2018). Dentre essas técnicas de 

levantamento geológico, temos a utilização de dados de sensoriamento remoto que 

contribuem de forma suplementar aos estudos de descoberta e avaliação de jazidas 

(Bonham-Carter, 1994), fornecendo bons resultados e novas perspectivas com baixo 

custo operacional aos métodos tradicionais de prospecção mineral. (Rajesh, 2004). 

Existe uma quantidade considerável de publicações, no meio científico, de 

aplicações de uso de sensoriamento remoto na pesquisa mineral. Na sua maioria, 

estão relacionadas com o uso de imagens de satélites multiespectrais, 

hiperespectrais ou de radar na caracterização de contatos entre unidades geológicas 

(definidos ou inferidos) e no mapeamento de áreas potencialmente mineralizadas 

para mineração [Ciampalini et al. (2013), Feizi & Mansouri. (2013), Van der Meer et al. 

(2014), Silva et al. (2016), Shirazi et al. (2018), Ourhzif et al. (2019)], com alguns 

trabalhos voltados para uma revisão da popularização do sensoriamento remoto na 

área das geociências [Coulter et al (2017), Wu et al (2018), Bedini (2022)]. No entanto, 

existe uma falta na comunidade científica mostrando uma visão geral das técnicas e 



 
 

7 
 

tendências compiladas sistematicamente para um bem mineral específico, uma vez 

que que as interpretações estruturais, litológicas, metalogenéticas e de controle de 

minério incorporadas no modelo prospectivo variam de acordo com a substância e o 

seu grau de alteração (Deb & Kaur, 2008) e, desta forma, podem influenciar no tipo de 

dado de sensoriamento remoto utilizado, bem como na metodologia de 

geoprocessamento abordada. Portanto, para nortear uma visão mais extensa com o 

objetivo de contemplar e compreender os padrões de desenvolvimento inexplícitos 

neste campo de investigação, a bibliometria pode ser um recurso útil. 

A bibliometria pode ser definida como uma análise da pesquisa bibliográfica 

baseada em ferramentas matemáticas e estatísticas para selecionar e averiguar 

publicações, citações, periódicos em muitas disciplinas e campos de estudo (Santana 

et al, 2021). Segundo Vasconcelos et al. (2020) Sua metodologia consiste na 

identificação de publicações e de seus autores através de palavras-chaves, 

associadas a um tema em questão e realiza uma análise qualitativa e quantitativa 

para extrair tendencias de investigação, podendo ser expressos em forma de redes 

de mapeamento, relacionando essa base de dados de acordo com termos extraídos 

do título, resumo ou palavra-chave (co-palavra); colaboração intelectual de diferentes 

autores, organizações ou países (co-autoria); ou entre a correlação de citações entre 

manuscritos (co-citação). 

Nesse sentido, esse trabalho objetiva realizar uma análise bibliométrica das 

publicações científicas com uso de dados de sensoriamento remoto para o 

mapeamento de litologias mineralizadas em ferro ao longo do tempo. Para melhor 

abordagem sobre esse tema, pretende-se responder as seguintes questões: i) Quais 

as metodologias de processamento digital de imagens e modelagem de dados mais 

utilizadas? ii) Quais os dados de sensoriamento remoto e de fatores geológicos de 

controle de minério mais frequentes nas publicações? iii) Quem são os autores e 

entidades que mais publicam sobre o tema? iv) Quais os países com publicações 

mais representativas? 
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2.2 METODOLOGIA 

 

A metodologia proposta está organizada em três fases, as duas primeiras são 

compostas por um sinalizador condicional, o que significa que a próxima fase só 

poderá ser iniciada, se as condições da fase anterior forem aceitáveis. Esse processo 

é importante porque fornece uma visão equacionada, à medida que direciona as 

etapas envolvidas no estudo, assegurando uma análise e sistematização mais 

robusta das informações. A primeira fase consiste no levantamento bibliográfico, de 

acordo com as questões norteadoras da pesquisa, através da seleção dos critérios 

de busca. A segunda fase consiste na filtragem da base de dados, selecionando 

apenas as publicações pertinentes ao estudo. Por fim, a terceira fase compreende a 

representação dos resultados e as análises realizadas para responder as perguntas 

propostas anteriormente. 

 

2.2.1 Base de dados bibliográficos 

 

A plataforma de busca acadêmica escolhida para o levantamento bibliográfico 

foi o Scopus, por estar entre os maiores bancos de dados de publicações científicas 

multidisciplinares (Gusenbauer, 2019) e por possuir ferramentas adicionais de análise 

e compilação de informação, como rankings de publicações e de revistas acadêmicas, 

perfis de autores com cálculos de produtividade e impacto, com possibilidade de 

exportação de dados para múltiplos formatos (Elsevier, 2022). 

A seleção das palavras-chave foi efetuada de forma a compreender o 

mapeamento de formações ferríferas em toda extensão mundial, com a seleção dos 

tipos de sensores, fontes de coleções de imagens e métodos de processamento 

digital de imagens e modelagem de dados, incluindo metodologias de classificação 

baseadas em algoritmos de inteligência artificial, especificamente o aprendizado de 

máquina (Machine Learning), que apesar de não estar contemplado na ciência do 

sensoriamento remoto, representa uma nova tendência nos estudos de construção 

de modelos prospectivos (Ye et al, 2018). A estratégia de pesquisa para a seleção 

das palavras-chave teve como foco o objetivo de selecionar apenas os artigos que 

tratavam do estudo geológico para óxidos de ferro com uma metodologia que 

envolvesse sensoriamento remoto. Essas publicações poderiam envolver a aplicação 

direta do sensoriamento remoto para a identificação de rochas mineralizadas em 
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ferro, bem como trabalhos que efetuação uma revisão das técnicas de sensoriamento 

remoto na geologia. Essa pesquisa se deu através das seguintes etapas: Apenas 

artigos contendo as palavras “remote sensing” e “iron” localizadas no título, ou 

resumo, ou nas palavras-chave do resumo ou especificadas pelo autor foram 

considerados. Para a lógica de consulta, foram testados diferentes arranjos de termos 

e operadores booleanos até chegar às combinações mais abrangentes para o âmbito 

do estudo, ou seja, que englobassem a maior quantidade possível de artigos 

relacionados com o tema e com o mínimo possível de publicações não relevantes. 

Por fim, foram selecionados somente trabalhos do tipo artigo e em estágio final de 

publicação, para reduzir falsos positivos ao evitar a duplicação de artigos, caso 

tenham sido publicados em outras fontes, como simpósios, congressos ou capítulos 

de livros. 

2.2.2 Filtragem e revisão 

 

Ainda no ambiente Scopus, a primeira fase da filtragem consistiu na exclusão 

dos artigos não correspondentes ao tema de pesquisa. Para isso, foram incluídos 

parâmetros restritivos para selecionar apenas os artigos pertencentes as categorias 

das áreas das ciências exatas e de caráter multidisciplinar, como as ciências 

ambientais. 

Uma primeira conferência visual foi efetuada, com leitura de cada título dos 

artigos pesquisados para identificar as publicações de maior referência com os 

objetivos do estudo e os mais citados. Em seguida, foi realizada uma leitura de cada 

resumo para destacar os estudos mais relevantes para leitura completa e para excluir 

os artigos em que a pesquisa realizada não fosse considerando o mapeamento 

geológico de minerais óxidos de ferro, embora, tenha sido incluído na base, artigos 

abordando pesquisas em que a prospecção é voltada para minerais de alteração 

hidrotermal e minérios sulfetados que podem estar enriquecidos em ferro, no caso da 

mineração de cobre, ouro e os depósitos de ferro-titânio-vanádio. 

 A partir desse ponto, foi montado um banco de dados, composto pelas bases 

de artigos selecionadas pelas combinações de palavras-chave que conseguiram 

incluir todas as publicações consideradas relevantes na etapa anterior. Ao baixar 

essas bases da plataforma Scopus, foram extraídas as seguintes informações: títulos, 
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palavras-chave do resumo, autores principais, co-autorias, instituições e 

organizações, países, ano de publicação, frequência de citações, referências e o 

código de identificação (DOI). Por fim, para identificar os padrões de distribuição das 

diferentes metodologias aplicadas e dados de sensoriamento remoto utilizados, foi 

realizada uma categorização das tabelas exportadas do Scopus em formato csv, 

utilizando o software Microsoft Excel, para compartimentar os artigos de acordo com 

o tipo de contexto geológico envolvido na ocorrência do minério, localidade, método 

aplicado e fonte do instrumento de sensoriamento remoto. Essas edições são 

suplementares a metodologia bibliométrica, mas permitem uma melhor estrutura para 

auxiliar na construção das redes de co-palavra e co-citação. 

A tabela abaixo (tabela 1) sintetiza as etapas envolvidas nesta fase. 

 

Tabela 1 – Tabela da relação de publicações levantadas e selecionadas de acordo com a combinação 
de diferentes palavras-chave. 

Palavras-chave 
Total de 
artigos 

pesquisados 

Total de 
artigos 

selecionados 

Período dos 
artigos 

selecionados 

"Geological” AND “Dataset” AND “mineral 
exploration” AND “Machine Learning” AND 

“Remote Sensing" 

41 5 2016-2021 

"Remote Sensing” AND “Iron Oxides" 373 125 1977- 2021 

"Machine Learning” AND “Iron Oxides” AND 
“Geology" 

25 5 2019 – 2021 

"Iron deposits” AND “Iron ore” OR “Geology” AND 
“remote sensing” OR “Learning systems” OR 
“artificial intelligence” OR “Data integration" 

128 42 1981 – 2021 

Total de publicações pós-filtragem 567 177 1977-2021 

 

 

2.2.3 Análises das redes 

 

A construção das redes foi efetuada pelo software VOSViewer. Para as redes 

de co-palavra, os critérios de análise incorporaram a inserção do arquivo modificado 

thesaurus e a escolha dos parâmetros de visualização obedeceram aos seguintes 

limites: dois para o número mínimo de ocorrências de uma palavra-chave, trinta e 
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quatro para o número de palavras-chave selecionadas para o cálculo de intensidade 

de conexão das co-ocorrências, método de contagem inteira e com a inclusão das 

palavras-chave “indexadas” e “citadas pelo autor”. Essa abordagem permitiu 

visualizar a evolução do conhecimento científico, identificando os diferentes nichos 

de pesquisa, de acordo com sua área de atuação. 

 As redes de co-citação utilizaram três para o número mínimo de citações de 

uma referência, noventa para o número de fontes selecionadas para o cálculo de 

intensidade de conexão das co-citações, método de contagem fracionada e “fontes 

citadas” como unidade de análise. Esses critérios foram escolhidos para reduzir o 

tamanho da rede e para equacionar os artigos com maior contribuição na identificação 

dos padrões de pesquisa, ao selecionar as citações com os métodos e tópicos mais 

frequentes na pesquisa de ferro. 

O fluxograma metodológico (Figura 1) ilustra as fases e etapas envolvidas 

nesse trabalho. 

 
Figura 2 – Fluxograma da metodologia, expondo as diferentes etapas de trabalho e atividades 

envolvidas. 

 

2.3 RESULTADOS 

 

Um total de 567 artigos foram extraídos após examinar a base do Scopus, dos 

quais, 390 foram rejeitados por não envolver temáticas de sensoriamento remoto no 
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mapeamento de ferro, resultando em uma quantidade final de 177 artigos publicados 

em um período entre 1977 e 2021. 

A figura abaixo (Figura 2) mostra o comportamento da evolução anual da 

quantidade de publicações por cada combinação de palavras-chave separadamente. 

 A)   

B)  

C)  

D)  
Figura 3 – Evolução anual da quantidade de publicações ao longo do tempo para as 

combinações. A) "Geological” AND “Dataset” AND “mineral exploration” AND “Machine Learning” AND 

“Remote Sensing". B) "Remote Sensing” AND “Iron Oxides". C) "Machine Learning” AND “Iron Oxides” 

AND “Geology". D) "Iron deposits” AND “Iron ore” OR “Geology” AND “remote sensing” OR “Learning 

systems” OR “artificial intelligence” OR “Data integration". 



 
 

13 
 

A partir da base final de artigos, foi possível efetuar o gráfico do número de 

publicações anuais (Figura 4), onde observou-se pouca variabilidade na quantidade 

de artigos nos primeiros trinta anos do período definido (entre 1977 e 2006) e, a partir 

de 2007, um crescimento considerável. É notável, também, a existência de anos que 

se destacam pela grande quantidade de publicações, como 1977, 1984, 1997 e 2019, 

assim como os que apresentaram uma quebra na cadência, com um número bem 

reduzido de artigos, quando comparados com os anos vizinhos, exemplo de 2006, 

2015, 2016, 2020 e 2021. Dentre as publicações selecionadas, 55% estão associados 

a área das ciências da terra, 10,6% a área da geofísica, 10,5% a área das ciências 

computacionais, 9,5% a área das engenharias, 8,6% as ciências ambientais e os 

5,8% restantes, estão divididos em publicações nas áreas das ciências dos materiais, 

sociais, agricultura e matemática. 

Ao observar a Figura 3, podemos notar que as publicações referentes as 

combinações de palavra-chave envolvendo metodologias de machine learning 

começaram a aparecer somente na segunda metade da década de 2010. De acordo 

com os gráficos, houve um decrescimento de número de artigos em 2020, seguido de 

uma retomada de publicações nos anos seguintes 

 
Figura 4 – Evolução anual da quantidade de publicações ao longo do tempo. A linha vermelha 

sinaliza a tendência de comportamento dos dados do gráfico. 
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2.3.1 Países ou territórios com publicações mais representativas 

 

Uma informação extraída dos artigos pesquisados foi o país de origem das 

publicações. Foram identificados 16 países com trabalhos publicados ao longo 

período de 1977 a 2021 (Figura 5). De antemão, é notável a disparidade da 

quantidade de artigos no período entre 2010 e 2019, comparado com as outras 

décadas. Outra informação interessante é que apesar do período de 2020 e 2021 

apresentar menor volume de publicações em relação a década anterior, somente 

nesses dois anos já foi possível superar o total de artigos produzidos na década de 

2000, com uma quantidade de 29 trabalhos, contra 26 publicações no período entre 

2000 e 2009. Os países que mais se destacam são, por ordem decrescente: a 

Australia, com 33 publicações; China, com 29; Iran, com 23; Brasil, com 21 e Índia, 

com 20. Alguns países se destacaram por apresentarem um pico de publicações 

somente em um período específico, como os Estados Unidos e o Reino Unido, que 

foram os países/territórios que mais publicaram nas três últimas décadas do século 

XX, o Canadá, que teve seus picos entre 1990 e 2010, junto com a Alemanha e o 

Egito, que teve grande destaque na década de 2010. Outros países, como a África 

do Sul, Algéria, Chile, Itália, Malásia e Rússia não tiveram uma quantidade 

significativa de publicações, mas contribuíram com o tema da pesquisa.  

 
Figura 5 – Gráfico de participação dos países de origem dos artigos levantados e sua frequência 

de publicação ao longo das décadas. 
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No que se refere a relação de citação das publicações entre as nacionalidades, 

temos a figura abaixo (Figura 6), que ilustra as tendências do relacionamento entre 

os países.  

 
Figura 6 – Evolução temporal da participação dos países de origem dos artigos publicados e sua 

relação de co-citação. 

Foi possível observar que até o início do século XXI, países como os Estados 

Unidos, Brasil, Australia e Reino Unido ocupavam a centralidade de referência na 

produção de pesquisas sobre o tema abordado. Esse panorama mudou após 2010, 

quando países como a China e o Iran começaram a ganhar notoriedade. 

  .  

2.3.2 Principais autores e instituições 

 

Para a análise de co-autoria, foram gerados mapas de redes com enfoque 

apenas para os autores em que suas publicações fossem especificamente voltadas 

para pesquisa em ferro (Figura 7), resultando em 19 publicações. A partir daí, foi 

possível sintetizar em forma de tabela (Tabela 2 e Tabela 3) com o ranking dos 

autores e instituições mais relevantes com suas respectivas quantidades de citações 

em outros trabalhos. 
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Figura 7 – Rede de co-autoria. As diferentes cores (clusters) e espessura das linhas indicam a 

interação entre os autores e seu nível de intensidade. Os diferentes tamanhos das fontes demonstram 

a quantidade de publicações e suas colaborações. 

Tabela 2 – Tabela da relação de influência dos autores de acordo com as publicações levantadas e 
selecionadas e número de citações. 

 

Com base nos resultados, é possível notar a que a China e Brasil estão na 

frente das publicações de uso de sensoriamento remoto na pesquisa mineral. Dos 

Colocação Autores Nº de Publicações Nº de Citações 

1 Silva, A.M. 4 89 

2 Mol, A.G. 3 78 

3 Ciampalini, A. 2 56 

4 El Gammal, E.A. 2 16 

5 Huang, S. 2 16 

6 Abulghasem, Y.A. 2 5 

7 Gao, T. 2 3 

8 Liu, L. 2 3 
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dez colocados mais influentes, temos países como Austrália, Itália, Egito e Malásia, 

menos expressivos na quantidade de publicações, porém com boa quantidade de 

citações. 

Tabela 3 – Tabela da relação de influência dos autores de acordo com as publicações levantadas e 
selecionadas e número de citações.    

 

2.3.3 Metodologias mais utilizadas 

 

Os mapas de co-ocorrência das metodologias utilizadas nas análises dos 

dados de sensoriamento remoto e informações geológicas selecionaram 150 termos 

com mais de 10 repetições extraídos dos dados textuais dos títulos, resumos e 

palavras-chave das informações bibliográficas. Após a remoção e/ou unificação de 

temas similares, restaram 26 termos que foram utilizadas para a construção da rede 

de relação de co-ocorrência mais presentes nos artigos científicos pesquisados 

(Figura 8). 

Colocação Autores 
Nº de 

Publicações 
País 

1 Chinese Academy of Sciences 14 China 

2 Universidade de São Paulo 11 Brasil 

3 Universidade de Brasília 
 

4 Brasil 

4 
University of Sydney 

 
4 Austrália 

5 
Università degli Studi di Firenze 

 
2 Itália 

6 
National Authority for Remote Sensing And Space 

Sciences 
 

2 Egito 

7 
Jilin University 

 
2 China 

8 
Universiti Kebangsaan Malaysia 

 
2 Malásia 

9 
China Geological Survey 

 
2 China 

10 Chang'an University 2 China 
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Figura 8 – Rede de co-ocorrência dos termos referentes aos temas e metodologias mais utilizadas 

dentre os artigos pesquisados. As diferentes cores (clusters) e espessura das linhas indicam, 

respectivamente, a frequência de ocorrência nas publicações e o nível de intensidade das relações. 

 

Foi observada a separação dos termos em quatro clusters, com destaque para 

o alto nível de intensidade da relação entre a pesquisa em ferro e o mapeamento 

litológico voltado para a metalogênese com o uso de imagens de sensores 

multiespectrais. As bases propostas envolvem a detecção de depósitos de ferro 

através de levantamentos geofísicos para o mapeamento litoestratigráfico com o uso 

de técnicas de inteligência artificial e modelagens estatísticas gaussiana de 

assimilação, observados no cluster vermelho. No cluster azul, temos a análise de 

imagens de satélite com classificação supervisionada e não-supervisionada (Principal 

Component Analysis- PCA) com utilização de razão de bandas e técnicas de 

inferência estatística, como o Maximum Likehood Estimation (MLE), com o uso de 

informações geomorfológicas. O cluster amarelo consiste no mapeamento de 

minerais de alteração com análises de espectrometria, com a utilização de imagens 
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de sensores hiperespectrais de satélites e aéreos. O cluster verde revela a pesquisa 

indireta de ferro com a compilação de sistemas de informações geográficas e análises 

de sensores multiespectrais, com a utilização de estudos de sedimentologia e de 

geologia estrutural. 

   A evolução dessas informações ao longo do tempo foi evidenciada no mapa 

de redes entre os termos selecionados (Figura 9), onde foi possível notar que as 

metodologias mais frequentes até 2014, eram aplicadas à sensores multiespectrais 

com levantamentos geofísicos, geomorfológicos, utilizando análises com o MLE. A 

maior parte dos outros termos estão localizados no período entre 2015 e 2017, com 

a aparição mais recente dos estudos envolvendo imagens aéreas e análises 

sedimentológicas a partir de 2018. 

   
Figura 9 – Rede de co-ocorrência dos termos referentes às metodologias mais utilizadas entre os 

artigos pesquisados em um intervalo temporal. 
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2.3.4 Ferramentas, bases geológicas e de dados de sensoriamento remoto 

mais utilizadas 

 

Para a tendência sobre as bases de dados mais utilizadas para a pesquisa em 

ferro, a análise realizada no VOSViewer retornou 249 termos, classificados em seis 

clusters, evidenciados no mapa de frequência de co-ocorrência da relação dos termos 

que mais aparecem nos artigos publicados (Figura 10). 

 

 
Figura 10 – Rede de co-ocorrência dos termos referentes às ferramentas e bases de dados 

geológicos e de sensoriamento remoto mais utilizadas dentre os artigos pesquisados. 

Algoritmos de Machine Learning e de inferência estatística se destacaram ao 

ter bastante frequência dentre as ferramentas mais citadas e o uso de imagens dos 

sensores Landsat (5, 7 e 8), Sentinel 2-A, Aster e Hyperion estão incluídas em todos 

os clusters de bases de dados. Dentre os conjuntos de dados geológicos observados, 
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percebe-se a utilização de informações geofísicas para o mapeamento estratigráfico, 

estrutural e de comportamento magnético para uma detecção de áreas mineralizadas. 

Foi observado o uso de dados geoquímicos, em conjunto com dados de amostras de 

rocha e solo, para avaliar o comportamento geoquímico do ferro e de outros 

elementos associados, bem como identificar níveis de teores das ocorrências 

minerais. Entretanto, é notável o grande destaque para o uso de dados de geologia 

espectral integrados a bases de informações geográficas, litoestratigráficas e de 

geologia estrutural para o mapeamento de zonas de alteração hidrotermal. Essas 

bases incluem informações de geologia, geofísica, geoquímica, geomorfologia, 

lineamentos geológicos, mineralogia e de solos que podem ter sido obtidas em 

campo, ou não. 

 

2.4 DISCUSSÃO 

 

Os cinco termos ou palavras mais frequentes mapeados pelo VosViewer 

(Anexo 1) foram: “remote sensing” (166 ocorrências), “iron deposits” (125), “iron 

ore”(116) “iron oxides” (99) e “mineral exploration” (88). É importante salientar que 

esse estudo tem como foco verificar o uso de sensoriamento remoto na pesquisa de 

ferro, portanto, devem ser consideradas as publicações tanto de âmbito científico 

quanto os de interesse econômico. Desta forma, a utilização de termos restritos a 

pesquisa mineral como “ore” ou “exploration” poderiam excluir uma parcela dos 

artigos. 

Foi observado uma tendência ascendente do número de artigos publicados ao 

longo dos anos. Em geral, o gráfico de publicações (Figura 4) se comportou de forma 

condizente ao panorama do tema, destacando a eficiência no mapeamento de zonas 

mineralizadas e o desenvolvimento / amadurecimento do sensoriamento remoto como 

uma ciência. O número crescente de publicações também revela a expansão gradual 

da disponibilidade dos sistemas de sensores, uma vez que o acesso ao acervo de 

imagens de satélite não era disponibilizado de forma gratuita até 2007 (Masek et al, 

2020). Desta forma, fica evidente que o aumento de publicações está relacionado 

com a disponibilidade de dados, com o frequente avanço na tecnologia e com o 

surgimento de novos sensores e técnicas.  
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Outro ponto importante é considerar que as variações mais acentuadas do 

número de publicações em anos particulares são decorrentes da área da pesquisa 

mineral estar diretamente associada a economia mundial. A taxa de consumo de bens 

minerais, principalmente na indústria e na construção civil, afeta a demanda e o preço 

das commodities de bens minerais e, consequentemente, pode influenciar na 

rentabilidade do investimento na área (Marziyeh e Osanloo, 2015). Os picos do número 

de publicações podem estar associados a uma possível alta do preço do minério de 

ferro, enquanto os anos em que houve uma queda expressiva de publicações, como 

nos anos de 2009 e 2020, que coincidem com os períodos de mudanças econômicas 

globais (Song et al, 2019; Jowitt, 2020). 

Segundo Wårell (2014), o mercado do minério de ferro era caracterizado pelo 

Producer Pricing, ou seja, os maiores produtores (Vale, Rio Tinto e BHP Billiton) e a 

Indústria europeia do aço tinham total dominio sobre a negociação dos preços, que 

eram definidos anualmente. Entretanto, após a crise econômica de 2008, esse 

modelo se tornou insustentável devido as pressões econômicas provenientes das 

repercussões dessa crise (Silva, 2014). 

Ainda segundo Wårell (2014), isso mudou a partir de 2009 quando o mercado 

global adotou o regime de preços chamado “spot price”, que introduziu um sistema 

de negociação trimestral, baseado nos preços da commodity no trimestre anterior. 

Adicionalmente, o mercado do ferro passou a ser dominado pela China que, por conta 

do seu crescimento acelerado na primeira década do século, impulsiou a demanda 

global pelo metal, mudando a estrutura de oferta e por consequência os preços, que 

passaram a incluir os custos de frete no valor final.  

Consequentemente, essa mudança de regime teve um efeito significativo nos 

preços do minério (Figura 11), que aumentaram bruscamente, causando uma 

verdadeira corrida pela busca de jazidas ferríferas por todo o mundo, que influenciou 

no aumento de publicações cientificas nesse período. Em 2020, com a pandemia do 

COVID-19, os governos recorreram a investimentos em infraestrutura, com o objetivo 

de impulsionar o crescimento econômico, o que causou altas históricas do preço do 

minério (Figura 12). 
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Figura 11 – Preços do minério de ferro de 2003 a 2012 (em dólares americanos por unidade de 

tonelada métrica seca) (Fonte: Wårell, 2018). 

 

 

Figura 12 – Preços do minério de ferro de 2000 a 2022 (em dólares americanos por unidade de 

tonelada métrica seca) (Fonte: Reuters, 2022) 

A maioria das publicações está associada com a ocorrência de reservas de 

minério de ferro e sua contribuição na produção mundial e a nacionalidade de seus 

autores. Austrália, Brasil, China e Índia, que ficaram entre os cinco países que mais 

publicaram sobre o tema, são, em respectiva ordem, os líderes da produção de 

minério de ferro do mundo (Brasil, 2020). O Iran, que foi o país terceiro colocado em 

número de publicações, é o décimo primeiro maior produtor de ferro do mundo, 

embora grande parte de suas publicações selecionadas foram voltadas para a 

pesquisa de depósitos do tipo pórfiro mineralizados em cobre, onde o ferro aparece 
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como mineral de associação, por ser um elemento compatível do ponto de vista 

geoquímico (Majid et al, 2018). A Rússia, quinto maior produtor mundial de minério de 

ferro, teve um número de publicações bem inferior aos demais. Isso é explicado pelo 

fato que de, nesse país, a produção de ferro não é tão expressiva quando comparado 

a outras substâncias, sendo o ferro correspondente a 4% da produção mineral 

(Safirova, 2018). 

A relação de autores mais citados e que mais publicaram sobre o tema não é 

totalmente convergente com o ranking de produção mineral correspondente ao seu 

país de origem, ou seja, os autores que mais publicaram não são necessariamente 

dos países que mais produzem minério de ferro. O número de publicações dos 

autores que focam especificamente na pesquisa mineral em ferro (tabela 2), é 

relativamente baixo, quando comparado com o número de publicações das 

instituições (tabela 3). Os mapas da rede da evolução temporal da participação dos 

países de origem dos artigos publicados e de co-autoria (Figuras 6 e 7) relacionam a 

citação das publicações de acordo com a localidade do depósito estudado e 

empresas mineradoras envolvidas, a exemplo dos depósitos de ferro da Provincia 

mineral de Carajás, no Brasil, onde temos uma colaboração técnico-científica com 

artigos de co-autoria entre autores brasileiros do meio acadêmico (Silva, A.M.) e 

australianos, que trabalham nas mineradoras (Mol, A.G.). Em geral, há uma 

regionalização das redes de co-autoria dos artigos publicados, com pouca interação 

interpaíses. 

No que se refere aos termos mais frequentes e as metodologias mais adotadas 

para o estudo de áreas potencialmente mineralizadas em ferro, observou-se uma 

padronização pelo tipo de modelagem geológica exploratória. Os modelos 

exploratórios envolvem a construção intelectual dos estudos descritivos, conceituais 

e diagnósticos para integrar as áreas de conhecimento científico com o objetivo de 

predizer condições geológicas favoráveis à ocorrência de depósitos minerais (Adams, 

1985). As linhas de aplicação do sensoriamento remoto, encontrados nas 

publicações, para esse tipo de modelo foram: mapeamentos litológicos, estruturais e 

de alteração hidrotermal. 

O uso de sensoriamento remoto para mapeamentos litológicos está entre os 

trabalhos de maior representatividade como uma das técnicas mais tradicionais na 
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caracterização espectral de regiões mais enriquecidas em óxidos de ferro (Kuzvart e 

Böhmer, 1986). Sua aplicabilidade é justificada na eficiência do mapeamento de semi-

detalhe, como informação complementar aos mapas geológicos de escala regional. 

Dentre os métodos de processamento digital de imagens mais usuais, temos a 

composição falsa cor (false color composite), razão de bandas (band ratios), PCA 

(Principal Component Analysis), MNF (Minimum Noise Fraction), LS-Fit (Least 

Squares Fitting) e SAM (Spectral Angle Mapper), aplicados em imagens dos sensores 

Landsat e Aster (Feizi e Mansouri, 2013; Ciampalini, 2016; Shirazi et al, 2018; Ourhzif et 

al, 2019), bem como Sentinel (Van der Meer, 2015; Van der Werff, 2020) e Hyperion 

(Silva, 2016). 

O mapeamento de lineamentos é utilizado em conjunto com os estudos 

litológicos, especialmente para os depósitos de ferro que possuem forte controle 

estrutural por conta do seu ambiente geotectônico (Gross, 1980). O estudo mais 

relevante envolvendo os temas dessa análise, na base de dados da Scopus, foi 

proposto por Ahmadi e Pekkan (2021), que realizou uma revisão, no período de 1975-

2021, das técnicas de extração de lineamentos de forma manual, semi-automática e 

automática. Os autores sugerem que a integração de métodos automáticos e 

manuais, com a utilização de dados de radar, mais especificamente o InSAR 

(Interferometric Synthetic Aperture Radar) e de dados geofísicos, se possível, são 

bem eficientes para melhor identificação das relações estratigráficas entre as 

unidades e o mecanismo de alojamento das intrusões e sua interação com as 

encaixantes. 

Os mapeamentos de alteração hidrotermal representam grande valor na 

pesquisa mineral como recursos na detecção de novas jazidas. No que se refere a 

depósitos de ferro, como foi observado nas publicações selecionadas nesse estudo, 

o foco foi no estudo de depósitos do tipo IOCG (iron oxides-copper-gold) e as 

ocorrências lateríticas supergênicas (Teixeira et al, 2015). Dentre os métodos de 

processamento digital de imagens mais usuais, temos a composição falsa cor, razão 

de bandas, SAM e PCA aplicados em imagens do sensor Landsat (Amos e 

Greenbaum,1989), com integração de dados de geofísica e geoquímica. Destaca-se 

também, a aplicação da espectrometria, aplicados em imagens dos sensores 
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hiperespectrais (Bedini, 2017) para estimar a relação dos óxidos de ferro e minerais 

de alteração de acordo com seu comportamento espectral.  

A aprendizagem de máquina (Machine Learning) e aprendizagem profunda 

(Deep Learning) ainda são temas bastante desafiadores na classificação e 

reconhecimento de corpos geológicos a partir de imagens de sensoriamento remoto. 

Estudos envolvendo inteligência artificial (IA), particularmente o aprendizado 

de máquina, oferecem oportunidades economicamente benéficas na área das 

geociências e exploração mineral (Chen and Wu, 2016; Caté et al, 2017; Brandmeier 

et al, 2019). Essas técnicas recentemente desenvolvidas à prospecção analisam os 

ativos de informações de alto volume, alta velocidade e / ou alta variedade, 

conhecidos como Big Data (Gartner, 2001), e permitem identificar padrões em 

grandes conjuntos de dados multivariados e fazer previsões com base neles. Esses 

métodos têm grande potencial para integração de dados e podem ajudar na tomada 

de decisões para modelagem de depósitos minerais (Hill et al., 2014). 

Sobre essas pesquisas, destacaram-se os pesquisadores chineses que 

desenvolveram estudos ao treinar uma grande quantidade de dados, para obter 

automaticamente informações de estruturas geológicas em campo (Zhang et al, 2018). 

Outros autores, como Liu et al (2021), utilizaram imagens de sensores hiperespectrais 

com dados geoquímicos e métodos de aprendizado de máquina para elaboração de 

um modelo geométrico de depósitos hidrotermais do tipo IOCG, com o objetivo de 

uma fazer uma análise e julgamento relevantes no planejamento de mina, ao melhorar 

a capacidade de processamento de imagens de sensoriamento remoto de alta 

resolução, aumentando assim o seu valor de aplicação. Outros trabalhos como o de 

Harvey e Fotopoulos (2016) utilizaram dados geofísicos, especificamente dados 

magnéticos de intensidade total, elevação digital do terreno, e anomalia de gravidade 

Bouguer, para delinear regiões de interesse, como possíveis contatos entre unidades 

rochosas e tendências estruturais existentes, que são frequentemente escondidos 

sob material de superfície, a exemplo da vegetação e do solo, inferidos através do 

algoritmo random florest. Um dos trabalhos mais recentes, realizou uma investigação 

sobre aplicação da aprendizagem profunda na exploração mineral conduzida por 

Hojat et al (2021), concluiu que a aprendizagem profunda tem boas aplicações para 

classificação da imagem de acordo com normalização dos espectros de reflectância 
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para que se possa comparar características de absorção individuais a partir de uma 

linha de base comum. 

2.5 CONCLUSÕES 

 

Este estudo conclui-se reforçando a ideia de que o bibliometria se constitui 

como uma ferramenta relevante para os estudos da pesquisa mineral, sobretudo para 

permitir uma contextualização de sua evolução como ciência. 

Essa constatação é importante para delimitar os principais eixos temáticos que 

discutem a utilização do sensoriamento remoto no estudo da exploração para ferro. 

A análise das redes de palavras-chave permitiu identificar tendências existentes, 

padrões relacionais e, sendo assim, foi um dado relevante para o prosseguimento 

desta pesquisa, sobretudo na delimitação do universo de análise que esse trabalho 

seguirá. 

Sobre estas pesquisas, a revisão bibliométrica não indica claramente um 

procedimento padrão para a modelagem de um depósito mineral, assim, é importante 

considerar os pontos fortes e as limitações de cada método, em comparação com 

outros e para além disso, a análise das litologias e dos fatores controladores de uma 

jazida são fundamentais para a definição dos processos envolvidos na formação de 

depósitos minerais. A utilização de métodos híbridos, embora complexa e ainda 

limitada na literatura revisada, parecem promissores na melhor investigação desse 

campo de atuação. 

Para além disso, a continuidade do compartilhamento do conhecimento 

científico entre países, organizações e autores, que é a melhor estratégia para 

impulsionar o desenvolvimento da tecnologia, técnicas de cartografia, processamento 

digital e refinamento das metodologias aplicadas. 
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ANEXO 1 – 50 TERMOS MAIS FREQUENTES MAPEADOS PELO VOSVIEWER 

Colocação termo Número de ocorrências 

1 Remote sensing 166 

2 Iron deposits 126 

3 Iron ore 116 

4 Iron Oxides 99 

5 Mineral exploration 88 

6 mapping 87 

7 minerals 87 

8 Satellite imagery 85 

9 Spectral analysis 76 

10 Hydrothermal alteration 72 

11 landsat 72 

12 Geological mapping 70 

13 hematite 65 

14 reflection 62 

15 lithology 57 

16 Spectral reflectance 55 

17 Image processing 55 

18 geochemistry 53 

19 multiespectral 50 

20 Alteration zones 49 

21 Infrared spectroscopy 42 

22 Detection method 40 

23 Reflectance spectrum 38 

24 algorithm 36 

25 Spatial distribution 34 
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26 absorption 33 

27 Natural resources 29 

28 stratigraphy 15 

29 radiology 12 

30 Image resolution 11 

31 hyperspectral 9 

32 Band ratio 8 

33 Regression analysis 6 

34 magnetite 6 

35 Learning systems 5 

36 Artificial intelligence 5 

37 Banded iron formation 5 

38 wavelenght 5 

39 indicator 4 

40 Ferric oxide 4 

41 lineament 4 

42 pca 4 

43 correlation 4 

44 soil 3 

45 Gold deposits 3 

46 weathering 3 

47 Rare earths 3 

48 porphyry 3 

49 kaolinite 2 

50 mica 2 
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Capítulo III 

 

APLICAÇÕES DE SENSORIAMENTO REMOTO NO MAPEAMENTO 
PROSPECTIVO PARA FERRO: POTENCIALIDADE NO ESTADO DA BAHIA. 

 

 

 

3.1 INTRODUÇÃO 

 

O estado da Bahia conta com uma ampla diversidade geológica e potencial 

metalogenético. Além de possuir rochas dentre as mais antigas da Terra, com idades 

estimadas a 3,4-3,5 bilhões de anos, seu histórico de atividades tectônicas e 

geomorfológicas contribuíram para a geração de um grande e diversificado acervo 

litológico (Carvalho et al, 2010). Esse panorama geodinâmico favoreceu inúmeros 

processos mineralizantes em seu território (Teixeira et al, 2010), resultando na 

formação de províncias minerais, fato que posicionou a Bahia entre os cinco estados 

com maior disponibilidade de recursos minerais do Brasil. 

Nesse sentido, a Bahia ocupa um papel de destaque no cenário da mineração 

do Brasil como o terceiro maior produtor mineral do país (SDE, 2022), com ênfase na 

produção de ouro, cobre e níquel, que representam 65% de toda produção mineral 

do estado. Além disso, temos o vanádio e cromo, substâncias que a Bahia lidera como 

maior produtor nacional, por possuir as maiores reservas minerais do país. 

Para o minério de ferro, a produção na Bahia representa, aproximadamente, 

6% dos principais bens minerais produzidos no estado (SDE, 2022), mesmo com 

ocorrências de depósitos ferríferos de médio a grande porte distribuídos por todo seu 

território (Figura 1). Os Distritos do Sudoeste (Caetité/Brumado) e do Norte da Bahia 

(Remanso/Sento Sé) destacam-se pela quantidade e qualidade dos seus recursos, 
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com tonelagens totais estimadas acima dos 10 bilhões de toneladas. Ambos contêm 

minérios com concentrações de Fe que variam entre 35% e 45% em média, com 

ocorrência de teores entre 50% e 67%, nos depósitos de Caetité/Brumado (Lanfranchi 

et al.,2017) e de Remanso/Sento Sé (Ribeiro, 2017). Unidades hematíticas e itabiríticas 

espessas ligadas a sequências sedimentares vulcânicas estão relacionadas com 

estes depósitos (Alves, 2008; Cunha et al, 2008). No Recôncavo Baiano, encontram-se 

também minérios de baixo grau (>30% Fe), associados a anfibolitos, compactos a 

semi-compactos, principalmente nos depósitos de Coração de Maria. Além das 

informações citadas, são escassas as produções acadêmicas sobre a pesquisa de 

minério de ferro no estado e os poucos registros encontrados são da literatura técnica 

em campanhas pontuais (Leonardos, 1937; Santana et al., 1974; Souza et al., 1979, 

Alves, 2008; Cunha et al, 2008, Lanfranchi et al.,2017; Ribeiro, 2017). Adicionalmente, a 

maior parte das informações essenciais como a localização e a caracterização 

quantitativa / qualitativa dos depósitos estão limitados às mineradoras que os detêm 

por questões estratégicas e sigilo industrial. Entretanto, ao todo, estima-se que 

existem pelo menos 12,5 bilhões de toneladas de ferro ainda não explorados 

distribuídos em pelo menos cinco distritos ferríferos no estado (Ribeiro, 2017). 

De acordo com o anuário mineral brasileiro (Brasil,2022), a produção 

beneficiada da Bahia em 2021 foi de, aproximadamente, 1,8 milhões de toneladas 

(0,016% da produção nacional de ferro), com teor de Fe de 65,5%. Comparando com 

o estado de Minas Gerais, que no mesmo ano, produziu 225,17 milhões de toneladas 

(64,35%), com teor de 61,92% e o Pará 188,83 milhões de toneladas (34,5%) com 

teor de 64,93%, o estado ainda está longe de se tornar um importante componente 

na mínero-indústria da produção de ferro do país. Dentre os fatores limitantes para 

um crescimento expressivo da mineração baiana está na deficiência de uma logística 

de transporte. Atualmente, a Bahia não possui uma infraestrutura robusta para o 

escoamento dessa produção (CBPM, 2023). A FCA (Ferrovia Centro-Atlântica), que 

cruza o estado norte-sul e é o único acesso ferroviário para os Portos de Salvador e 

de Aratu-Candeias, encontra-se sem manutenção e o trecho 1 da FIOL (Ferrovia de 

Integração Oeste-Leste), que liga a cidade de Caetité (próxima a Mina Pedra de Ferro) 

ao Porto Sul, ainda está em construção, com previsão de conclusão em 2026. 
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Outro fator importante é a necessidade de uma pesquisa capaz de inovar, 

integrar e caracterizar qualitativamente/quantitativamente o conhecimento técnico-

científico a partir dos dados disponibilizados, que possa dar suporte a um projeto 

logístico de grande escala. Esses são vetores importantes em qualquer fase de 

planejamento e tomada de decisão. Com um projeto logístico ferro-portuário 

otimizado e investimentos em sistemas de beneficiamento no estado, 

indubitavelmente, a Bahia se posicionaria como um dos importantes produtores de 

minério de ferro do Brasil, juntamente com os estados de Minas Gerais, e Pará, os 

maiores produtores de ferro do país. 

Com base nesse cenário, é preciso um melhor entendimento do panorama 

mineiro regional para ferro, para direcionar as análises e interpretações 

metalogenéticas dos depósitos a nível local. Desta forma, o uso de sensoriamento 

remoto na pesquisa mineral, representa um dos estágios iniciais da exploração 

(Hronsky e Groves, 2008), ao fornecer mapeamentos de potencial mineral combinando 

dados geológicos, mineralógicos, geoquímicos, geofísicos, espectrais e propriedades 

físicas da rocha (Silva, 2016), possibilitando a identificação de áreas de relevante 

interesse econômico em áreas extensas (Feizi e Mansouri, 2013; Ciampalini, 2016; 

Shirazi et al, 2018; Ourhzif et al, 2019), (Van der Meer, 2015). No capítulo anterior, vimos 

que os modelos exploratórios envolvem a construção intelectual dos estudos 

descritivos, conceituais e diagnósticos para integrar as áreas de conhecimento 

científico com o objetivo de predizer condições geológicas favoráveis à ocorrência de 

depósitos minerais. Esses modelos predizem condições geológicas favoráveis à 

ocorrência de depósitos minerais em multi-escala, gerando alvos para os 

levantamentos em detalhe (follow-ups) nos estágios finais da pesquisa mineral 

(Adams, 1985), (Soares Filho, 2015). 

Este trabalho tem como objetivo desenvolver uma metodologia para o 

mapeamento de áreas potenciais a prospecção de ferro. O estudo visa avaliar o uso 

de técnicas de processamento digital de imagens e modelagem de dados aplicados 

aos dados de sensoriamento remoto como subsídios para otimizar os trabalhos de 

campo contemplados na pesquisa mineral e contribuir com o avanço da pesquisa 

científica e na construção do conhecimento.  
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3.2 METODOLOGIA 

 

 

3.2.1 Área de estudo 

 

O estado da Bahia está localizado na porção mais meridional da região 

nordeste do Brasil. O contexto geológico regional das formações ferríferas do estado 

segue, predominantemente, o mesmo padrão da maioria das ocorrências de ferro no 

mundo, com deposições entre o mesoarqueano e o paleoproterozoico (~3,2 – 1,6 Ga) 

(Biondi, 2003) ocorrendo, comumente, em três tipos distintos: Lago Superior, Algoma 

e Rapitan (Gross,1980). Os ambientes geotectônicos associados a esses tipos de 

depósitos são, respectivamente, as plataformas de margem continental; cinturões 

tectônicos de arcos vulcânicos e rifts das cadeias meso-oceânicas; e aos vales em 

rifts e grabens de terrenos glaciais de alto relevo (Chemale Junior e Takehara, 2013). 

Na Bahia, a maior parte das ocorrências de ferro conhecidas são do tipo Algoma, 

associados aos ambientes de greenstone belts de idades neoarqueana a 

paleoproterozóica). Entretanto, as maiores reservas estão relacionadas as 

sequências metavulcanossedimentares paleoproterozóicas, consideradas do tipo 

Lago Superior (Santana et al, 1974). Esses ambientes são representados pela 

ocorrência de formações ferríferas bandadas (Banded Iron Formations – BIFs): 

rochas sedimentares formadas por camadas intercaladas de deposições de óxido de 

ferro e de sílica e/ou carbonatos. 

O estado conta com clima, relevo, tipos de vegetação e solo variados (IBGE, 

2004). A porção leste está inserida no bioma mata atlântica com clima litorâneo úmido 

com transição para o clima tropical, com temperaturas sempre superiores a 18Cº e 

chuvas bem distribuídas durante o ano todo (Pereira, 2009). A vegetação varia com a 

predominância de formações florestais, com algumas áreas de mangue e de restinga 

(IBGE, 2012). Essa região é composta em sua maior parte por uma faixa de 

sedimentos quaternários recobrindo terrenos granulíticos do mesoproterozoico com 

relevo representado pelos platôs sedimentares bastante ondulados e solos do tipo 

latossolos e argissolos. A porção oeste do estado é composta predominantemente 

por coberturas sedimentares do proterozoico e fanerozoico e corresponde ao bioma 

cerrado, com clima tropical sazonal, com estações chuvosas e períodos de seca bem 

demarcados e variações de temperatura, mais frias nos períodos secos e mais 
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quentes nos períodos chuvosos (Sano et al, 2008). A vegetação predominante é 

composta por formações campestres e savânicas (IBGE, 2012), o relevo é mais ou 

menos aplainado com grande presença de chapadas cortadas por patamares e os 

solos são do tipo latossolos, neossolos, espodossolos e cambissolos. O restante do 

estado está inserido no bioma caatinga, característico pelo clima semi-árido, com 

baixos índices pluviométricos e altas temperaturas (Ab'sáber, 1974). A vegetação é 

representada pelas formações savânicas estépicas (IBGE, 2012), o relevo apresenta 

altitudes variadas, com existência de chapadas e planaltos cortados por depressões 

interplanálticas pediplanizadas, com solos, em geral, rasos e muito arenosos, 

representados por latossolos, argissolos, neossolos, vertissolos e cambissolos.  

 

3.2.2 Desenho amostral 

 

Geralmente para os métodos de sensoriamento remoto empregados na 

exploração mineral, é necessário que a área selecionada para modelagem contenha 

um número satisfatório de dados de entrada que se deseja pesquisar (Bonham-Carter, 

1994). Este trabalho propõe avaliar uma aplicação de análise espacial guiada por um 

conjunto restrito de dados de entrada. Essas amostras servem para treinar e avaliar 

o modelo através de comparações e cálculos estatísticos aplicados ao conjunto de 

mapas evidenciais. Para isso, foram escolhidas a Mina Pedra de Ferro, no município 

de Caetité e a Mina Mocó no município de Piatã, por representarem depósitos de ferro 

de grande e pequeno porte, respectivamente. A partir da localização central das 

minas, foram delimitadas zonas de amostras aleatórias de amostras para o 

treinamento, denominadas estratos amostrais. Foram definidos cinco estratos 

amostrais a partir da área da cava das minas, seguido por um buffer realizado em seu 

entorno (Tabela 4). Para avaliar a classificação foram selecionadas três zonas de 

controle: as áreas de concessão de lavra e de requerimento de pesquisa para minério 

de ferro, extraídas da plataforma Sigmine da Agência Nacional de Mineração (ANM) 

e a geologia obtida do Serviço Geológico Brasileiro SGB-CPRM (Figura 13). 
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Figura 13 – Mapa de localização da área de estudo sobreposta a imagem SRTM sombreada, 

destacando os estratos de amostragem na Mina Pedra de ferro (A) e Mina Mocó (B), os estratos de 

classificação e a geologia simplificada. 
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Tabela 4 – Tabela da relação dos estratos de amostragem, utilizados para os dados de entrada (input) 

e os estratos de classificação, utilizados como zonas de controle para a classificação supervisionada. 

Categoria Descrição Fonte 
Nº de 

amostras 

Estrato 
amostral 

Delimitação de área correspondente a cava da 
mina 

autor 20 

Estrato 
amostral 

Delimitação da área de entorno da mina, 
correspondente a zona de influência de 100m  

autor 20 

Estrato 
amostral 

Delimitação da área de entorno da mina, 
correspondente a zona de influência de 200m 

autor 20 

Estrato 
amostral 

Delimitação da área de entorno da mina, 
correspondente a zona de influência de 500m 

autor 20 

Estrato 
amostral 

Delimitação da área de entorno da mina, 
correspondente a zona de influência de 10km 

autor 40 

Estrato de 
validação 

Poligonais de concessão de lavra requeridas e 
autorizadas para minério de ferro como 

substância principal 
ANM  

Estrato de 
validação 

Poligonais de pesquisa mineral requeridas e 
autorizadas para minério de ferro como 

substância principal 
ANM  

Estrato de 
validação 

Unidades litoestratigráficas com favorabilidade de 
ocorrência de formações ferríferas 

CPRM  

 

 

3.2.3 Biblioteca espectral e índices 

 

Para esta etapa, usa-se a Espectroscopia de Reflectância, que é uma técnica 

que mede, em diferentes comprimentos de onda, a energia eletromagnética refletida 

da superfície dos materiais e representa na forma de um gráfico, denominado de 

curva de reflectância espectral; que é uma fonte de referência para a interpretação de 

imagens e funciona como uma assinatura para distintos materiais. (Meneses e 

Almeida, 2012).  A quantidade de radiação refletida (radiância) comparada com a 

radiação incidente (irradiância) sobre os objetos fornece a medida de reflectância 

captada por sensores, chamados espectrorradiômetros. Essas medidas 

espectrorradiométricas são uteis na área de geologia de exploração, por auxiliar na 

determinação da composição mineralógica de uma rocha e, consequentemente, na 

identificação de mineralizações economicamente relevantes. 

O primeiro passo consistiu em construir uma biblioteca espectral de referência. 

Essa biblioteca é composta por um conjunto de espectros de reflectância de materiais 
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de composição conhecida, obtidas em campo, na região das minas Pedra de Ferro e 

Mocó e medidas no laboratório de espectrometria de reflectância (LABESPECTRO) 

na Universidade Estadual de Feira de Santana (UEFS - Bahia) com um 

espectrorradiômetro do tipo FieldSpec® 4 Hi-Res, com resolução VNIR de 3 nm e 

SWIR de 8 nm, com desempenho espectral de irradiação solar de gama completa 

(350-2500 nm). Foram selecionadas amostras mineralizadas e não mineralizadas em 

ferro, bem como amostragem de solo da camada superficial nos locais de rocha 

mineralizada, como uma informação auxiliar para verificar uma possível associação 

com outras áreas de mineralização similar no mapeamento espectral. Cada amostra 

foi medida em todas suas faces, fresca e exposta, com atenção nas diferenças na 

resposta espectral relacionada às variações texturais, especialmente, de micro-

relevo, com o objetivo de obter espectros mais padronizados e com menos ruídos. 

Por fim, cada medição espectral gera como resultado uma tabela com os valores de 

refletância referentes a cada comprimento de onda. Esses dados foram cedidos por 

LANFRANCHI et al (2017) de sua tese de doutorado. A partir daí, foram geradas 

médias das medições de cada amostra, o que possibilitou a construção dos gráficos 

das assinaturas espectrais por amostra. Esses gráficos foram armazenados no 

formato de uma biblioteca espectral de referência. 

O segundo passo foi construir a biblioteca espectral amostral, a partir das 

amostras aleatórias coletadas. A comparação com a informação contida na biblioteca 

espectral de referência possibilita a identificação dos minerais e rochas presentes na 

imagem (Clark, 1999). Na amostragem por estratos, efetuada no mosaico da imagem 

de satélite, foram gerados pontos aleatórios em cada estrado amostral. O objetivo 

dessa etapa foi extrair amostras aleatórias de pixels correspondentes aos diferentes 

elementos geográficos da imagem. Em seguida, cada ponto foi inspecionado, 

categorizado e separado em conjuntos de acordo com os estratos de amostragem. 

Para o minério de ferro exposto, foram selecionados os pixels referentes aos pontos 

localizados na área da cava das minas. Para o solo, foram selecionados os pontos 

referentes as áreas de solo exposto sem vegetação. Para mistura de solo e 

vegetação, as áreas com solo exposto e pouca vegetação e para os pontos de 

vegetação, foram consideradas as áreas de vegetação sem solo exposto. 
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Para a escolha do sensor, foi preciso considerar o tipo de substância alvo e a 

área de estudo proposta. No capítulo anterior, observamos a aplicação de diversas 

técnicas de modelagem e processamento digital de imagens, com o objetivo de 

mapear áreas com a existência de minerais que contêm ferro, através da utilização 

de diferentes sensores como o Landsat e Aster (Feizi e Mansouri, 2013; Ciampalini, 

2016; Shirazi et al, 2018; Ourhzif et al, 2019), bem como Sentinel-2 (Van der Meer, 2015; 

Van der Werff, 2020) e Hyperion (Silva, 2016). Desta forma, a utilização do Sentinel-2 

foi a mais ideal para esse trabalho. O sensor apresenta uma vantagem por possuir 

múltiplas bandas (5-8) no intervalo de comprimento de onda entre 0,7 e 0,9 µm, região 

onde é observada características de absorção de minerais ferríferos como goethita 

(~0,78-0,92µm), jarosita (~0,72-0,93µm) e hematita (~0,75-0,84µm) (Van der Meer, 

2015), enquanto outros sensores multiespectrais, como o Landsat e Aster, fornecem 

apenas uma única banda. Contudo, é considerado inferior quando comparado com 

sensores hiperespectrais, como o Hyperion, Hymap e o WorldView 3. No entanto, o 

Sentinel-2 possui alta capacidade de revisita (10 dias) o que possibilita obter uma 

cobertura espacial completa, mais homogênea e com menos nuvens em toda área de 

estudo. 

 

3.2.4 Análise de indícios (potencial) de mineralização 

 

A comparação das curvas espectrais obtidas com os dados Sentinel-2 com a 

biblioteca espectral de referência foi realizada através do método SAM (Spectral 

Angle Mapper). A técnica SAM permite o mapeamento da similaridade entre o 

espectro de um píxel da imagem e o espectro de referência de bibliotecas espectrais, 

seja proveniente de campo, laboratório ou extraído da própria imagem (Kruse et al., 

1993). O SAM realiza um cálculo do ângulo entre os espectros amostrados e os de 

referência para determinar a sua semelhança, através de um algoritmo que converte 

todos os espectros em vetores em um espaço com o número de dimensões igual ao 

número de bandas espectrais utilizadas na imagem.  

Como resultado, foi obtido o percentual de semelhança de cada espectro das 

amostras coletadas, com base na sua proximidade com o espectro de referência de 

cada substância mineral. Para os índices de potencialidade, as amostras foram 

reclassificadas considerando três fatores: o estrato amostral, o tema referente ao 
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elemento geográfico superficial na imagem e a média dos percentuais de semelhança 

das amostras coletadas com a biblioteca de referência. Desta forma, foi possível 

atribuir uma hierarquia para cada conjunto de amostras, por tema e estrato amostral, 

de acordo com o percentual de semelhança com a biblioteca de referência (Anexo 2). 

Essas novas classes foram utilizadas para definir os níveis de potencialidade mineral. 

Para essa etapa, foi utilizado o software ENVI 5.3, com recortes da imagem Sentinel 

referentes as zonas de estrato amostral.  

Mapas de potencialidade mineral são utilizados para identificar áreas que 

possuem boas hipóteses de hospedar recursos minerais (Ford, 2013). Envolve uma 

abordagem estatística multivariada com a extração de evidências espaciais, dado um 

conjunto de entrada, organizada em SIG (Sistema de Informações Geográficas). Em 

seguida, uma análise de previsão por ponderação, que pode ser orientada ao dado 

(data driven), a exemplo dos algoritmos de machine learning (Ho,1995; Chen, 2016; 

Harvey, 2016; Caté, 2017; Brandmeier, 2019; Hojat, 2021), ou orientada ao conhecimento 

(knowledge driven), como a lógica fuzzy (Bonham-Carter, 1994), para combinar, 

interpretar e avaliar a previsão de áreas importantes a partir de um conjunto de 

evidências conhecidas. 

A detecção de alvos potenciais através da análise de píxel foi um produto de 

uma classificação através de um algoritmo de machine learning. Uma das técnicas de 

machine learning bastante promissoras para a área de prospecção mineral são as de 

ensemble learning, um tipo de aprendizagem supervisionada que combina as 

previsões de vários estimadores base com múltiplos algoritmos de aprendizado para 

obter um modelo preditivo mais robusto (Caté et al., 2017). O algoritmo random forest 

é um dos mais utilizados, por ser mais simples a sua implementação e por gerar bons 

resultados, ao criar uma coleção de árvores de decisão, em que a classificação ou 

regressão, no caso, é obtida através do voto majoritário da “floresta”, assim, capaz de 

gerar predições mais estáveis e com boa acurácia (Ho, 1995).  

Na plataforma Google Earth Engine, os seguintes parâmetros-chave foram 

definidos durante a implementação desta etapa: (1) Seleção das bandas vermelho, 

red-edge2, NIR, red-edge4 e SWIR1 do mosaico Sentinel-2; (2) conjunto de 

treinamento composto pelas amostras coletadas, de acordo com as classes de 

potencialidade. (3) As unidades litoestratigráficas, com contexto geológico favorável 
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a formação de depósitos minerais ricos em ferro, como limite de extensão da 

classificação supervisionada. Após a execução do Random Forest, foram avaliados o 

nível de precisão da classificação, com base na matriz de confusão e o nível de 

importância variável, através da utilização de pontos com ocorrências de ferro, 

extraídos da base da CPRM, para validação do modelo.  

O fluxograma metodológico (Figura 14) ilustra as fases e etapas envolvidas 

nesse trabalho. 

 

 
Figura 14 – Fluxograma da metodologia, expondo as diferentes etapas de trabalho e atividades 

envolvidas. 
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3.3 RESULTADOS 

 

 

3.3.1 Comportamento espectral 

 

Os gráficos da dispersão dos pontos referentes aos pixels amostrados das 

classes de minério, solo, mistura de solo e vegetação e vegetação coletadas na 

imagem em cada estrato (Figura 15) expõem uma grande variabilidade nos valores 

da reflectância das classes de minério e solo nos estratos mais próximos das áreas 

das minas e pouca variação das classes de mistura de solo/vegetação e vegetação.  

 

Figura 15 – Gráficos de dispersão dos pontos de pixels representativos de minério, solo, mistura 

solo/vegetação e vegetação extraídos da imagem nos estratos: (0) zona da área das minas (100) buffer 

de 100m das áreas das minas, (200) buffer de 200m das áreas das minas, (500) buffer de 500m da 

área das minas e (1000) buffer de 10km, representando distâncias maiores que 500m das áreas das 

minas.  

As linhas mostram a semelhança entre a curva espectral das amostras de solo 

no estrato das minas com a assinatura do minério e à medida que se afasta, observa-

se uma mudança na feição de reflexão na banda do SWIR, com o aumento dos 
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valores de reflectância nos estratos mais afastados das áreas das minas. A curva da 

classe de mistura solo/vegetação no estrato das minas exibe um comportamento mais 

parecido com a curva do solo no mesmo estrato, entretanto nos estratos seguintes, 

observa-se um comportamento mais semelhante as curvas da classe da vegetação, 

que na banda do SWIR, apresenta um aumento do valor da reflectância nos estratos 

mais afastados das minas. 

 

Foram gerados gráficos das curvas espectrais referentes as amostras das 

classes de minério, solo, mistura de solo e vegetação e vegetação coletadas na 

imagem em cada estrato (Figura 16) para avaliar o comportamento espectral das 

amostras. Os gráficos mostram, em geral, curvas com acentuada feição de absorção 

nos intervalos entre 0,6 e 0,9 µm, o que indica a presença de ferro. Nas amostras de 

solo, mistura de solo e vegetação e vegetação, observa-se comportamentos distintos 

nas feições de absorção das curvas nas bandas do vermelho, infravermelho próximo 

(NIR) e infravermelhos de ondas curtas (SWIR) entre os estratos, com valores de 

reflectância mais próximos das amostras de minério nas áreas mais próximas das 

minas e mais divergentes nos estratos mais distantes. 

 

  

  

Figura 16 – Assinatura mediana de pixels representativos de minério, solo, mistura 

solo/vegetação e vegetação extraídos da imagem nos estratos: (0) zona da área das minas (100) buffer 

de 100m das áreas das minas, (200) buffer de 200m das áreas das minas, (500) buffer de 500m da 

área das minas e (1000) buffer de 10km, representando distâncias maiores que 500m das áreas das 

minas. 
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Foram gerados também, gráficos boxplot para avaliar o comportamento da 

dispersão dos dados coletados em cada banda da imagem Sentinel (Figura 17).  

 

 
Figura 17 – Gráficos bloxpot dos pontos representativos de minério, solo, mistura solo/vegetação 

e vegetação extraídos da imagem nos estratos: (0) zona da área das minas (100) buffer de 100m das 

áreas das minas, (200) buffer de 200m das áreas das minas, (500) buffer de 500m da área das minas 

e (1000) buffer de 10km, representando distâncias maiores que 500m das áreas das minas. 

Através do gráfico é possível entender o comportamento dos dados em cada 

banda. No estrato da área da mina, os dados referentes ao minério apresentam 

grande variabilidade nas bandas do vermelho ao NIR, os dados de solo possuem 

maior variabilidade nas bandas do vermelho e do SWIR, a classe mista de solo e 

vegetação apresenta maior variabilidade nas bandas do SWIR e os dados de 

vegetação na região do Red-edge e NIR. 
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3.3.2 Análise Minimum Noise Fraction (MNF) e Spectral Angle Mapper (SAM) 

 

A rotina de redução do ruído dos dados através da função MNF calculou os 

autovalores da imagem Sentinel, de tal forma que ordenou os seus conteúdos de 

informação e ruído. O resultado dessa operação é expresso em forma de uma tabela, 

onde os números de autovalores calculados estão classificados de forma 

decrescente, sendo os valores mais próximos de zero representando os ruídos. 

Aplicando as componentes, correspondentes ao conteúdo de informação geradas, na 

imagem, é possível obter uma composição colorida onde pode-se identificar as 

variações tonais dos diferentes tipos de elementos de acordo com os temas das 

amostras. A técnica SAM permitiu o mapeamento da similaridade entre o espectro de 

um pixel da imagem e o espectro de referência provenientes das bibliotecas 

espectrais. Com isso, foram obtidos os índices (endmembers) correspondentes aos 

materiais de referência que espectralmente predominam no píxel, apresentados na 

forma de uma tabela (Anexo 2), mostrando a ordem de semelhança com o tipo de 

amostra da biblioteca de referência referente as classes de cada estrato. A figura 18 

sintetiza os resultados de acordo com a classe, percentual de semelhança e estrato 

de coleta. 

 

Figura 18 – Gráficos da semelhança dos valores médios das classes com a biblioteca espectral 

X zona de distância (estratos de amostragem). 
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3.3.3 Classificação Random Forest 

 

Os resultados do processamento utilizando o Random Forest mostram o 

mapeamento das áreas de potencialidade para ocorrência de depósitos de ferro bem 

distribuídos ao longo do estado (Figura 19).   

A análise localizou zonas de média potencialidade entre as cidades de Caetité 

e Licínio de Almeida, pertencentes ao Distrito do Sudoeste da Bahia. Esses corpos 

se alinham em um trend norte-nordeste a sul-sudoeste, de aproximadamente 150 km 

de comprimento. Ainda nessa região, é possível notar duas ramificações de áreas 

potencialmente baixas, sentido norte-noroeste. Ao sul de Brumado, é possível 

observar clusteres de áreas, com a predominância de baixa potencialidade, que à 

medida que se estendem sentido norte-noroeste, passando por Piatã e terminando 

em Boninal, aumentam o potencial ferrífero. 

No Distrito do Sudeste da Bahia, uma faixa de orientação norte-sul com média 

potencialidade é observada. Se estende desde ao norte de Jequié e diverge próximo 

de Iguaí, sentido nordeste-sudoeste em direção a Vitoria da Conquista e ao norte-

noroeste a sul-sudeste até Itapebi. É possível notar, nessa região a ocorrência de 

mais dois trends paralelos ao de Jequié-Iguaí. 

Próximo a capital, no triangulo formado pelas cidades de Nazaré, Coração de 

Maria e Mundo Novo, zonas de formato lenticular se estendem, sentido norte-

noroeste a sul-sudeste. Essas zonas, pertencentes ao Distrito do Recôncavo, foram 

mapeadas com níveis variando de baixo a médio grau de potencialidade e se 

ramificam em direção as cidades de Queimadas e Jaguarari, mais ao norte do estado. 

No norte do estado, a análise mapeou a faixa correspondente ao Distrito 

ferrífero Norte, localizado próximo das cidades de Remanso e Sento Sé. Essa área 

se estende sentido nordeste-sudoeste até a região próximo de Santa Rita de Cássia, 

com um aumento gradativo do nível de potencialidade mineral. 

Na figura 20, o mapa de potencialidade foi sobreposto com as delimitações dos 

distritos sugerido por Ribeiro (2017), áreas das poligonais de requerimentos de lavra 

e pesquisa junto a ANM, bem como pontos referentes as localizações de ocorrência 
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mineral. Em geral, o processamento conseguiu mapear áreas dentro dos distritos 

conhecidos e além deles, observado no mapa entre as cidades de Caetité e Jequié, 

porção intermediária aos distritos Sudoeste e Sudeste. Outras regiões fora dos 

distritos incluem uma zona descontinua ao norte do Distrito do Recôncavo, próximo a 

Macururé e uma faixa que se estende de Sobradinho a Umburanas. 

 

 
Figura 19 – Mapa de potencialidade para ferro na área de estudo 



 
 

51 
 

 

 
Figura 20 – Mapa de potencialidade para ferro na área de estudo sobreposta a imagem SRTM 

sombreada, destacando os pontos de depósitos conhecidos e as poligonais de requerimentos de lavra 

e de pesquisa 
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3.3.4 Validação 

 

As poligonais de requerimentos minerários foram utilizadas para verificar a 

consistência do modelo. Para as poligonais nas fases de concessão de lavra temos 

as minas Pedra de Ferro e Mocó, utilizadas no treinamento, que estão representadas 

nas figuras abaixo (Figura 21a e 21b), com o mais alto potencial (vermelho) 

coincidindo com o minério exposto na área das cavas. Este mesmo padrão é 

observado em outras minas não incluídas no treinamento (figuras 21c, 21d e 21e), 

respectivamente, a Largo (Fe-Ti-V, Vanádio Mineração S/A), Mina Andorinha (Cr, 

Ferbasa) e a Mina Caraíba (Cu, Caraíba Metais), que embora suas substâncias 

principais mineradas não sejam o ferro, as jazidas minerais em questão estão 

associadas a formações ferríferas lavradas como substância secundária, portanto, 

existe a presença de Fe mineral. 

  

  

A 

B 
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Figura 21 – Comparação das áreas de concessão de lavra com imagens de alta resolução 

(Google). (A) Mina Pedra de Ferro, (B) Mina Mocó, (C) Mina vanádio de Maracás (Largo), (D) Mina 

Andorinha e (E) Mina Caraíba 

 

C 

D 

E 
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As áreas referentes as poligonais nas fases de requerimento de lavra ainda 

não possuem uma cava aberta, no entanto, são locais onde já existe uma prospecção 

avançada, com abertura de picadas e trincheiras. O distrito ferrífero do sudoeste da 

Bahia (Figura 22) mostra as zonas de onde estão próximos os depósitos conhecidos, 

exibindo valores de média-alta potencialidade no mapa. Adicionalmente, foram 

identificados potenciais zonas de interesse, embora não exista nenhuma 

mineralização de Fe conhecidas até agora nessas áreas. 

 

 
Figura 22 – Mapa de potencialidade para Fe no distrito ferrífero do sudoeste da Bahia. 
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O distrito ferrífero do norte da Bahia (Figura 23) mostra as zonas de onde estão 

próximos os depósitos conhecidos, onde Dalton de Souza (Souza et al., 1979) realizou 

os primeiros registos de ferro significativos no Complexo Colomi e que se estendem 

até a Serra da Capivara no sul do Piauí, representadas pelas setas vermelhas. As 

áreas referentes as setas azuis representam os depósitos do Morro do Urubu, onde, 

desde 2018, ocorre a implantação de lavra pela empresa BR Ferro Mineração Ltda., 

subsidiaria da australiana Brazil Iron. Observa-se uma faixa com valores médios a 

altos de potencialidade da porção oeste do distrito, referentes as coberturas 

sedimentares detrito-lateríticas ferruginosas. 

 

 
Figura 23 – Mapa de potencialidade para Fe no distrito ferrífero do norte da Bahia. 

 

Para as poligonais nas fases de requerimento de pesquisa, foram levantadas 

3132 áreas requeridas. Destas, 1674 (53,44%) estão inseridas em regiões de 

potencialidade para ferro (Figura 24). Observa-se que os agrupamentos de 
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requerimentos realizados no mesmo período, próximos aos principais depósitos do 

estado, provavelmente correspondem as áreas requeridas pelas mineradoras 

detentoras das áreas de concessão de lavra da região. Ao redor dessas áreas estão 

dispersos requerimentos realizados no período subsequente. Os agrupamentos de 

requerimentos efetuados no período entre 2020 e 2022 sugerem novas etapas de 

pesquisa no estado. 

 
Figura 24 – Mapa de potencialidade para Fe e os requerimentos de pesquisa mineral. 
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 A avaliação de acurácia, com 175 pontos aleatórios em cada tema estudado. 

foram geradas a matriz de confusão e, a partir dessa, foram calculadas as métricas 

de acurácia (Tabela 5). As principais omissões foram nas classes de solo exposto nos 

estratos maiores que 500m da área das minas, possivelmente atribuída a 

predominância de pixels com similaridade espectral com os solos enriquecidos em 

Fe. O valor da Exatidão Global calculada foi de 69,80%.  

Tabela 5 – Tabela da matriz de confusão das classes de potencialidade. 1-Min (Minério), 2-Sol+(Solo 

com alto Fe), 3-Sol- (Solo com baixo ferro), 4- SV+(Solo e vegetação com alto Fe), 5- SV-(Solo e 

vegetação com baixo ferro), 6- Veg+ (Vegetação com alto ferro), 7- Veg- (Vegetação com baixo ferro). 

 Real 

Min Sol+ Sol- SV+ SV- Veg+ Veg- 

Mapa  

Min 1 0 0 0 0 0 0 

Sol+ 0 0,31 0,28 0,24 0,17 0 0 

Sol- 0 0,26 0,56 0,16 0,10 0 0 

SV+ 0 0 0 0,75 0,35 0 0 

SV- 0 0 0 0,08 0,92 0 0 

Veg+ 0 0 0 0 0 0,68 0,32 

Veg- 0 0 0 0 0 0,34 0,66 

 

3.4 DISCUSSÃO 

 

Os resultados do mapeamento de potencialidade apontam certa coerência 

quando comparada com a geologia do estado. As formações ferríferas do Distrito 

Sudoeste (Caetité-Brumado), que incluem a região da Mina Ferro de Pedra, estão 

intercaladas com as sequências metavulcanossedimentares do Complexo Licínio de 

Almeida (Lanfranchi et al., 2017). Essa região é representada, no mapa, pelo trend 

NNE-NNW delineando o flanco oriental da Serra do Espinhaço. 

As áreas com potencialidade para mineralizações ferríferas do Distritro 

Sudeste (Iguaí-Jequié) foram razoavelmente bem delimitadas. O mapeamento 

conseguiu distinguir os temas e os diferentes níveis de sinal de ferro, como o minério 

nas áreas de lavra e os traços de Fe em áreas de vegetação densa. Segundo Ribeiro 

(2017), os depósitos desse Distrito estão em três faixas, paralelamente alinhados 
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sentido NNE, denominadas Serra do Ouro, Boa Esperança e Itororó-Rio Novo. Essas 

áreas coincidem com os trends NNW-SSE identificados no mapa ao leste de Jequié 

e Iguaí. A extensa região mapeada com média potencialidade, que inclui as áreas 

próximas ao sudoeste de Jequié, passando por Vitoria da Conquista, se estendendo 

até a divisa do estado correspondem a coberturas detrito-lateríticas ferruginosas 

associadas a Unidade Ribeirão da Folha. 

No Distrito do Recôncavo, o mapeamento incluiu áreas do Complexo Santaluz, 

próximas a Mina Jacuípe, em Coração de Maria, mas também incluiu grande porção 

do Complexo Caraíba, representados nos clusters próximos a Nazaré e seguindo ao 

norte, sentindo Queimadas. Essas litologias englobam ortognáisses félsicos, 

enriquecidos em ferro, cálcio e magnésio (Teixeira, 1997). Embora, não exista registro 

de ocorrências de depósitos de ferro. O mapeamento também incluiu áreas referentes 

ao Greenstone Belt do Rio Itapicuru (Carvalho, 2010), que inclui as áreas da Mina 

Andorinha (Cromo) e a Mina Caraíba (Cobre), das quais, existem ocorrência de 

minerais com ferro, mas considerados como substâncias secundárias em ambas as 

minerações. 

No Distrito Norte (Sento Sé-Remanso), o Complexo Colomi, das fácies óxido e 

carbonato, é destacada pelo das superfícies onduladas e pediplanas da topografia de 

pediplano. As formações ferríferas lateríticas apresentam ausência ou presença 

insignificante de detritos terrígenos (Souza et al, 1979). O mapeamento apresentou 

boa sensibilidade à variação detrito-laterítica das coberturas ferruginosas, ao 

conseguir detectar os diferentes níveis de potencialidade de forma gradativa, 

acompanhando o mesmo sentido do trend norte do Craton São Francisco. 

Segundo Santana (1974), os BIFs observados no estado da Bahia são 

classificados em: a) Itabiritos Siliciosos, rochas com bandas ferrosas intercaladas com 

bandas quartzosas, com teores médios de Fe entre 30% e 45%; b) Itabiritos 

Dolomíticos, bandas dolomíticas intercaladas por bandas de óxido de ferro, com 

teores médios de Fe entre 30% e 35%; c) Itabiritos Anfibolíticos, correspondem a 

intercalação de bandas ferríferas com rochas metabásicas, com teores médios 

variando entre 25% a 32%; d) Magnetititos, Hematititos e Itabiritos Magnetíticos-

Hematíticos, rochas associadas a atividade hidrotermal, com baixa quantidade de 

sílica, são as BIFs que apresentam maiores teores, variando entre 50% a 67% de Fe; 
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e) Minério supergênico, formações ferríferas lateríticas, formadas pela lixiviação dos 

minerais de ganga pela água da chuva, formando um enriquecimento supergênico em 

óxido de ferro, com teores médios de 30% a 50%.  

A etapa da validação foi importante para avaliar a qualidade do mapeamento. 

Além do cálculo da acurácia global, a fase de análise por averiguação serviu para 

revelar estimativas das taxas de acerto e de erro para classe mapeada. Em geral, o 

mapeamento apresentou bons resultados. Mesmo assim, foram observadas diversas 

áreas possivelmente falso-positivas, alguns pixels muito claros podem ser mapeados 

como solos ricos em Fe. Entretanto, algumas áreas apresentadas nesse trabalho, 

como ao norte do estado, próximo da cidade de Macururé e ao oeste do Distrito Norte, 

em Santa Rita de Cássia, apresentam potencial. Além de seguir na mesma direção 

do sentido da sequência de falhas NE do Cráton São Francisco, a grande quantidade 

de requerimentos de pesquisa, aglomerados nessas regiões, podem sugerir uma 

maior atenção. 

Neste trabalho não foi considerada a variação mineralógica entre as diferentes 

rochas das unidades litoestratigráficas do estado e a pouca diferenciação na 

assembleia mineral identificada nas medições espectrais pode ter causado um 

problema de identificação na classificação, uma vez que suas diferenças espectrais 

não foram tão evidentes, o que resultou em uma dificuldade na distinção das rochas 

mineralizadas de suas encaixantes. Além disso, a quantidade de falsos positivos pode 

ter sido agravada pela existência de outros elementos na região de estudo, como as 

áreas urbanizadas e pela grande ocorrência de ferro laterítico disseminados nos solos 

superficiais. 

Analisando os dados do Sigmine, observa-se que em determinados períodos 

(2010-2015, 2016-2019 e 2020-2022), houve um aumento significativo dos 

requerimentos de pesquisa junto a ANM (Agência Nacional de Mineração), 

provavelmente incentivado pela alta dos preços das commodities de minério de ferro 

no mercado internacional. A grande dispersão das áreas requeridas no território do 

estado, com destaque de concentrações de requerimentos fora das áreas dos distritos 

ferríferos conhecidos sugere a existência de práticas de especulação, uma vez que, 

na maioria dos casos, esses requerimentos encontram-se aos arredores de áreas 

requeridas por mineradoras de grande porte, sem deixar de mencionar que em muitos 
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não há uma análise técnica qualificada. Embora exista a possibilidade de jazidas 

ferríferas ainda não estudadas ou que as extensões dos distritos de ferro existentes 

sejam ainda maiores do que as atuais delimitações. 

3.5 CONCLUSÕES 

 

A espectrorradiometria de reflectância demonstrou ser uma ferramenta útil no 

auxílio da discriminação das diferentes classes ao analisar as curvas de assinaturas 

espectrais. A utilização conjunta dos classificadores SAM e RF possibilitou a 

caracterização na imagem dos diferentes tipos de classes de minério, solo e 

vegetação com altos e baixos teores de ferro, o que resultou no mapeamento de 

zonas coincidentes com as áreas dos alvos conhecidos. No processamento digital 

das imagens Sentinel, o mapeamento permitiu discriminar diferentes traços de 

ocorrência de Fe entre os temas da imagem, o que apresentou resultados 

satisfatórios, especialmente quando comparados com informações de depósitos já 

conhecidos, mostrando coerência, principalmente os alvos prospectivos de alta 

relevância para exploração mineral. Os produtos gerados por este trabalho fornecem 

subsídios para sua interpretação, inclusive podendo gerar outros produtos que 

possam ser posteriormente submetidos a outros processamentos. O mapeamento 

espectral, assim como todo produto proveniente de técnicas de sensoriamento 

remoto, serve como diretrizes para orientar os estudos de pesquisa mineral, havendo 

a necessidade de um aprofundado estudo geológico de detalhe, em forma de etapas 

de campo, sondagens e amostragem das rochas existentes nas novas áreas 

sugeridas. Entretanto, por ser um método de avaliação relativamente rápido e barato, 

e a sua tecnologia está sempre se renovando, seus dados são atualmente críticos 

para a modelagem do meio ambiente voltada para exploração mineral. 
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ANEXO 2 – TABELA DE COMPARAÇÃO DAS ASSINATURAS ESPECTRAIS PELO SAM 

 

alvo
zo

n
a

classe
co

rr SA
M

 h
e

m
atita alto

 te
o

r 
co

rr SA
M

 h
e

m
atita b

aixo
 te

o
r 

co
rr SA

M
 q

u
artzo

 fe
rru

gin
o

so
co

rr SA
M

 Itab
irito

 alto
 te

o
r

co
rr SA

M
 Itab

irito
 b

aixo
 te

o
r

M
e

d
ia co

rr
n

o
va classe

classe

cae
tite

cava
1

91%
89%

85%
93%

94%
90%

m
in

e
rio

 b
aixo

 Fe
 itab

irito
1

m
o

co
cava

2
93%

92%
86%

84%
90%

89%
so

lo
 alto

 Fe
 h

e
m

atita
2

m
o

co
cava

1
93%

84%
89%

87%
87%

88%
m

in
e

rio
 alto

 Fe
 h

e
m

atita
2

cae
tite

cava
2

86%
88%

82%
83%

85%
85%

so
lo

 b
aixo

 Fe
 h

e
m

atita
2

m
o

co
10km

2
86%

83%
81%

76%
85%

82%
so

lo
 alto

 Fe
 h

e
m

atita
3

cae
tite

cava
3

48%
46%

45%
39%

51%
46%

ve
g b

aixo
 Fe

 itab
irito

7

m
o

co
cava

4
80%

76%
74%

70%
81%

76%
m

isto
 b

aixo
 Fe

 itab
irito

4

cae
tite

cava
4

79%
73%

70%
70%

86%
76%

m
isto

 b
aixo

 Fe
 itab

irito
4

cae
tite

100m
2

72%
74%

66%
67%

75%
71%

so
lo

 b
aixo

 Fe
 itab

irito
3

cae
tite

100m
3

48%
46%

45%
38%

45%
44%

ve
g b

aixo
 Fe

 h
e

m
atita

7

m
o

co
100m

2
72%

70%
75%

62%
74%

71%
so

lo
 Fe

 q
u

artzo
3

cae
tite

100m
4

62%
59%

58%
52%

64%
59%

m
isto

 b
aixo

 Fe
 h

e
m

atita
5

m
o

co
500m

2
71%

68%
73%

61%
74%

69%
so

lo
 b

aixo
 Fe

 itab
irito

3

m
o

co
200m

4
67%

65%
71%

57%
70%

66%
m

isto
 Fe

 q
u

artzo
5

m
o

co
100m

4
68%

67%
66%

59%
70%

66%
m

isto
 b

aixo
 Fe

 itab
irito

5

m
o

co
10km

4
68%

64%
62%

58%
73%

65%
m

isto
 b

aixo
 Fe

 itab
irito

5

cae
tite

200m
2

67%
63%

62%
57%

69%
64%

so
lo

 b
aixo

 Fe
 itab

irito
3

m
o

co
cava

3
66%

64%
62%

56%
63%

62%
ve

g b
aixo

 Fe
 h

e
m

atita
6

m
o

co
500m

4
64%

62%
60%

55%
67%

62%
m

isto
 b

aixo
 Fe

 itab
irito

5

cae
tite

200m
3

52%
49%

48%
42%

55%
49%

ve
g b

aixo
 Fe

 itab
irito

7

m
o

co
200m

2
63%

60%
58%

53%
65%

60%
so

lo
 b

aixo
 Fe

 itab
irito

3

cae
tite

200m
4

61%
59%

58%
52%

64%
59%

m
isto

 b
aixo

 Fe
 itab

irito
5

cae
tite

500m
2

84%
82%

78%
75%

83%
80%

so
lo

 alto
 Fe

 h
e

m
atita

3

m
o

co
200m

3
61%

59%
57%

51%
64%

58%
ve

g b
aixo

 Fe
 itab

irito
6

m
o

co
100m

3
61%

58%
57%

51%
64%

58%
ve

g b
aixo

 Fe
 itab

irito
6

m
o

co
10km

3
58%

55%
53%

48%
62%

55%
ve

g b
aixo

 Fe
 itab

irito
6

cae
tite

500m
3

47%
45%

53%
37%

51%
47%

ve
g Fe

 q
u

artzo
7

m
o

co
500m

3
51%

57%
48%

42%
54%

50%
ve

g b
aixo

 Fe
 h

e
m

atita
7

cae
tite

500m
4

63%
60%

66%
53%

59%
60%

m
isto

 Fe
 q

u
artzo

5

cae
tite

10km
2

76%
71%

67%
66%

81%
72%

so
lo

 b
aixo

 Fe
 itab

irito
3

cae
tite

10km
3

54%
51%

58%
44%

57%
53%

ve
g Fe

 q
u

artzo
7

cae
tite

10km
4

73%
69%

66%
63%

78%
70%

m
isto

 b
aixo

 Fe
 itab

irito
4



 
 

68 
 

 

Capítulo IV 

 

4.1 CONSIDERAÇÕES E RECOMENDAÇÕES FINAIS 

 

  Com base nas questões norteadoras que orientaram este estudo e o objetivo 

proposto, que era identificar áreas com relevante potencial de prospecção para ferro, 

utilizando quadros conceituais e analíticos para indicadores diagnósticos e métodos 

numéricos baseados em conjuntos de dados geoespaciais, são feitas as seguintes 

recomendações e considerações. 

Sobre o artigo 1: “APLICAÇÕES GEOLÓGICAS DE SENSORIAMENTO 

REMOTO NA PESQUISA DO POTENCIAL MINERAL PARA FERRO: UMA ANÁLISE 

BIBLIOMÉTRICA.” – Este estudo conclui-se reforçando a ideia de que o bibliometria 

se constitui como uma ferramenta relevante para os estudos da pesquisa 

mineral, sobretudo para permitir uma contextualização de sua evolução como ciência. 

A análise das redes de palavras-chave permitiu identificar tendências 

existentes, padrões relacionais e, sendo assim, foi um dado relevante para o 

prosseguimento desta pesquisa, sobretudo na delimitação do universo de análise que 

esse trabalho seguirá. A utilização de métodos híbridos, embora complexa e ainda 

limitada na literatura revisada, parecem promissores na melhor investigação desse 

campo de atuação. 

Sobre o artigo 2: “APLICAÇÕES GEOLÓGICAS DE SENSORIAMENTO 

REMOTO NA PESQUISA DO POTENCIAL MINERAL PARA FERRO: 

MAPEAMENTO DA POTENCIALIDADE NO ESTADO DA BAHIA” – Este trabalho 

possibilitou analisar os resultados obtidos por processamentos digitais de imagem em 

nuvem, que foi importante para demonstrar o potencial de utilizar técnicas sofisticadas 

de sensoriamento remoto para produzir dados em larga escala. O uso conjunto dos 

classificadores SAM e RF permitiu a caracterização por imagem utilizando diferentes 

amostras geoespaciais referentes a de tipos de minérios, solos e classes de 

vegetação com alto e baixo teor de ferro. A espectrorradiometria de reflectância 

provou ser uma ferramenta útil para ajudar a discriminar entre diferentes classes ao 

analisar curvas de assinatura espectral. 


