
Universidade Estadual de Feira de Santana

Programa de Pós-Graduação em Ciência da Computação

Inteligência Artificial e Acessibilidade na
Programação: Um Estudo Experimental

com Estudantes Cegos

Naiara Silva dos Santos

Feira de Santana

2025

Universidade Estadual de Feira de Santana

Programa de Pós-Graduação em Ciência da Computação

Naiara Silva dos Santos

Inteligência Artificial e Acessibilidade na Programação:
Um Estudo Experimental com Estudantes Cegos

Dissertação apresentada à Universidade
Estadual de Feira de Santana como parte
dos requisitos para a obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Orientador: Claudia Pinto Pereira

Feira de Santana

2025

Ficha Catalográfica – Biblioteca Central Julieta Carteado

Santos, Naiara Silva dos
S236i Inteligência Artificial e acessibilidade na programação: um estudo

experimental com estudantes cegos./ Naiara Silva dos Santos, 2025.
101f.: il.

Orientadora: Claudia Pinto Pereira

Dissertação (mestrado) – Universidade Estadual de Feira de Santana.
Programa de Pós-Graduação em Astronomia, 2025.

1.Inteligencia Artificial – Acessibilidade. 2.Programação. 3.Leitores
de tela. 4.Ambientes de Desenvolvimento Integrado (IDEs). I.Pereira,
Claudia Pinto, orient. II.Universidade Estadual de Feira de Santana.
III.Titulo.

CDU : 004.14

Maria de Fátima de Jesus Moreira - Bibliotecária - CRB-5/1120

Naiara Silva dos Santos

Inteligência Artificial e Acessibilidade na
Programação: Um Estudo Experimental com

Estudantes Cegos

Dissertação apresentada à Universidade Estadual.
de Feira de Santana como parte dos requisitos
para. a obtenção do título de Mestre em Ciência
da Computação.

Feira de Santana, 20 de agosto de 2025

BANCA EXAMINADORA

__
Dra. Claudia Pinto Pereira (Presidente)

Universidade Estadual de Feira de Santana (UEFS)

__

Dra. Nelma de Cássia Silva Sandes Galvão
Universidade Federal do Recôncavo da Bahia (UFRB)

__
Dra. Gabriela Ribeiro Peixoto Rezende Pinto

Universidade Estadual de Feira de Santana (UEFS)

Abstract

Artificial Intelligence (AI) has been increasingly applied in programming environ-
ments to optimize code development and improve accessibility. However, for blind
students, integrating AI into programming tools still presents challenges, especi-
ally regarding compatibility with screen readers and user interaction. This study
evaluates the impact of AI-assisted coding environments on the productivity and
accessibility of blind programming students. Through experiments comparing code
development with and without AI support, we analyze performance, error correc-
tion e!ciency, and user perception. The results indicate that AI significantly reduces
debugging time and enhances accessibility; however, di!culties persist in interpre-
ting AI-generated suggestions due to a lack of adaptation for assistive technolo-
gies. The study highlights the need for improvements in the integration of AI with
screen readers and proposes adjustments to enhance accessibility in development
environments. These findings contribute to the discussion on inclusive education
in computing and the development of more e”ective AI-driven solutions for blind
programmers.

Keywords: Artificial Intelligence, Accessibility, Programming, Screen Readers, In-
tegrated Development Environments (IDEs).

i

Resumo

A Inteligência Artificial tem sido cada vez mais aplicada em ambientes de progra-
mação para otimizar o desenvolvimento de código e melhorar a acessibilidade. No
entanto, para estudantes cegos, a integração da IA nas ferramentas de programação
ainda apresenta desafios, especialmente em relação à compatibilidade com leitores
de tela e à interação do usuário. Este estudo avalia o impacto de ambientes de
programação assistidos por IA na produtividade e acessibilidade de estudantes ce-
gos. Através de experimentos comparando o desenvolvimento de código com e sem
suporte de IA, analisamos o desempenho, a eficiência na correção de erros e a per-
cepção dos usuários. Os resultados indicam que a IA reduz significativamente o
tempo de depuração e melhora a acessibilidade; contudo, ainda há dificuldades na
interpretação das sugestões geradas pela IA, devido à falta de adaptação para tecno-
logias assistivas. O estudo destaca a necessidade de melhorias na integração da IA
com leitores de tela e propõe ajustes para tornar os ambientes de desenvolvimento
mais acesśıveis. As descobertas contribuem para a discussão sobre inclusão digital
no ensino da computação e o desenvolvimento de soluções mais eficazes baseadas em
IA para programadores cegos.

Palavras-chave:Inteligência Artificial, Acessibilidade, Programação, Leitores de
Tela, Ambientes de Desenvolvimento Integrado (IDEs).

ii

Prefácio

Esta dissertação de mestrado foi submetida à Universidade Estadual de Feira de
Santana (UEFS) como requisito parcial para obtenção do grau de Mestre em Ciência
da Computação.

A dissertação foi desenvolvida no Programa de Pós-Graduação em Ciência da Com-
putação (PGCC), tendo como orientadora a Profa. Dra. Claudia Pinto Pereira.

iii

Agradecimentos

Gostaria de expressar minha mais profunda gratidão a todos que, de alguma forma,
fizeram parte desta caminhada. Aos participantes da pesquisa, meu sincero reco-
nhecimento por compartilharem seu tempo, suas experiências e, acima de tudo, por
contribúırem para que este trabalho se tornasse posśıvel e significativo. À minha
orientadora, professora Claúdia Pinto Pereira, agradeço pela paciência, pela escuta
atenta, pelos conselhos sábios e por acreditar no potencial desta pesquisa mesmo
diante dos desafios. À minha famı́lia, que com tanto carinho e compreensão soube
respeitar meus momentos de ausência e cansaço, sendo meu porto seguro em cada
etapa desta jornada. Ao meu irmão Rian Silva Carvalho Santos, minha inspiração
diária, que me motiva a buscar sempre o melhor de mim e a nunca desistir dos meus
objetivos. Aos colegas de curso, que estiveram ao meu lado nos momentos mais
dif́ıceis e também nos mais felizes, oferecendo apoio, incentivo e partilhando conhe-
cimentos e risadas, meu muito obrigada. Cada um de vocês fez parte não apenas de
um caṕıtulo acadêmico, mas de uma história de aprendizado, superação e afeto que
levarei para toda a vida.

iv

Sumário

Abstract i

Resumo ii

Prefácio iii

Agradecimentos iv

Alinhamento com a Linha de Pesquisa viii

Produções Bibliográficas, Produções Técnicas e Premiações ix

Lista de Tabelas x

Lista de Figuras xi

Lista de Abreviações xii

1 Introdução 1
1.1 Problema de Pesquisa . 3
1.2 Relevância . 4
1.3 Objetivos . 5
1.4 Hipóteses . 6
1.5 Contribuições . 6
1.6 Organização do Trabalho . 7

2 Revisão Bibliográfica 8
2.1 Acessibilidade Digital e Inclusão Educacional 8
2.2 Recursos de Tecnologia Assistiva . 10

2.2.1 Leitores de Tela . 11
2.2.2 Soluções de IA em Ambientes de Desenvolvimento Integrado

(IDEs) . 12
2.2.3 Implementações de IA para Acessibilidade Digital 14

2.3 IA no Ensino Superior . 15
2.4 Trabalhos correlatos . 17

v

2.4.1 Experiências Educacionais em Disciplinas de Programação de
Computadores: uma Análise Qualitativa na Perspectiva dos
Estudantes com Deficiência Visual 17

2.4.2 Abordando as Barreiras de Acessibilidade na Programação
para Pessoas com Deficiência Visual: Uma Revisão da Literatura 18

2.4.3 Acessibilidade digital na era da inteligência artificial — Aná-
lise bibliométrica e revisão sistemática 18

2.4.4 Avaliação de acessibilidade dos principais aplicativos móveis
assistivos dispońıveis para pessoas com deficiência visual . . . 19

2.4.5 Diretrizes de Acessibilidade em Ambientes de Desenvolvi-
mento Integrado para Estudantes Cegos 19

2.4.6 Usuários de leitores de tela na era do Vibe Coding: adaptação,
empoderamento e novo cenário de acessibilidade 20

3 Metodologia 22
3.1 Levantamento Bibliográfico . 22
3.2 Experimentos Práticos . 24

3.2.1 Descrição dos Participantes 24
3.2.2 Descrição do Experimento . 26
3.2.3 Fase 1: sem IA . 28
3.2.4 Fase 2: com IA . 28

3.3 Coleta de Dados . 29
3.4 Análise . 30

3.4.1 Análise Qualitativa . 30
3.4.2 Análise de Conteúdo . 31
3.4.3 Etapas da Análise de Conteúdo 31
3.4.4 Categorias Temáticas Emergentes 31

4 Resultados 33
4.1 O Experimento . 33

4.1.1 Contextualização . 34
4.1.2 Atividade sem uso de IA . 34
4.1.3 Atividade com uso de IA . 44
4.1.4 Análise de Conteúdo . 52
4.1.5 Frequência das Categorias e Subcategorias 56

4.2 Recomendações Técnicas e Pedagógicas 58

5 Discussão 61
5.1 Acessibilidade em Ambientes de Programação 62
5.2 Desafios Técnicos e Estratégias de Programação 63
5.3 Recursos Educacionais e Inclusão . 65
5.4 Uso e Limites da Inteligência Artificial 66
5.5 Estratégias Individuais de Superação 68
5.6 Śıntese Representativa . 70

vi

6 Diretrizes Técnicas e Pedagógicas para a Inclusão de Estudantes Cegos na
Programação 73
6.1 Domı́nio do Leitor de Tela como Pré-requisito Pedagógico 73
6.2 Conhecimento do Sistema Operacional 74
6.3 Minimização da Concorrência Cognitiva no Ińıcio da Aprendizagem . 74
6.4 Introdução Gradual ao Uso de IDEs 74
6.5 Incentivo ao Hábito de Soletrar e Verificar Sintaxe 74
6.6 Formação na Pesquisa Autônoma e no Uso Ético da IA 75
6.7 Comandos Essenciais para Programadores Cegos 75

6.7.1 Comandos do NVDA . 75
6.7.2 Navegação no Sistema Operacional 76
6.7.3 Uso de Terminal . 76
6.7.4 Comandos do Visual Studio Code (VS Code) 77
6.7.5 Configurações do Leitor de Tela 77

6.8 Considerações Finais . 79

7 Conclusões 80
7.1 Trabalhos Futuros . 82

Referências 84

A Termo de Consentimento Livre e Esclarecido (TCLE) 90

B Sequência Didática 92

C Roteiro da Entrevista 95

D Questionário Online 98

vii

Alinhamento com a Linha de Pesquisa

Linha de Pesquisa: Software e Sistemas Computacionais

A presente dissertação está alinhada com a Linha de Pesquisa: Software e Sistemas
Computacionais, pois investiga o impacto da Inteligência Artificial (IA) na acessibi-
lidade e produtividade de estudantes programadores cegos. O estudo está alinhado
com pesquisas voltadas ao desenvolvimento e avaliação de software, incluindo pro-
cessos de concepção, teste e adaptação de ferramentas tecnológicas para públicos
espećıficos. A abordagem adotada permite não apenas mensurar o impacto do uso
de assistentes de código, mas também contribuir para o aprimoramento das soluções
existentes, promovendo uma melhor integração entre os desenvolvedores cegos e os
ambientes computacionais nos quais atuam.

viii

Produções Bibliográficas, Produções
Técnicas e Premiações

Evento: Simpósio Brasileiro de Educação em Computação (EduComp 2024)

T́ıtulo: (In)visibilidade da Diversidade nos Cursos Presenciais de Computação e Tec-
nologias da Informação e Comunicação: Um Panorama das Universidades Públicas
da Bahia

DOI: DOI: 10.5753/educomp.2024.237512

Autores: Claudia Pinto Pereira, José Solenir Lima Figuerêdo, Thiago Ribeiro Alves,
Naiara Silva dos Santos, Nelma de Cássia S. Sandes Galvão e Teófilo Alves Galvão
Filho

———

Evento: XIII Congresso Brasileiro de Informática na Educação (CBIE 2024) I
Workshop Uma Tarde na Urca: Encontro Filosófico sobre Informática na Educa-
ção (URCA 2024)

T́ıtulo: Impactos da IA Generativa na Inclusão de Estudantes Programadores Cegos:
Desafios e Oportunidades no Processo e Avaliação da Aprendizagem

DOI: 10.5753/urca.2024.245620

Autores: Naiara Silva dos Santos e Claudia Pinto Pereira

———

Evento: Simpósio Brasileiro de Educação em Computação (EduComp 2025)

T́ıtulo: Inteligência Artificial e Acessibilidade: Uma Experiência de Inclusão para
Programadores Cegos em Ambientes de Desenvolvimento

DOI: https://doi.org/10.5753/educomp.2025.5385

Autores: Naiara Silva dos Santos, Danyele de Oliveira Santana e Claudia Pinto
Pereira

ix

Lista de Tabelas

3.1 Perfil dos Participantes . 26
3.2 Linguagens, recursos assistivos e experiência dos participantes 27
3.3 Categorias temáticas e subcategorias identificadas 32

4.1 Quadro comparativo dos participantes na etapa sem uso de IA 44
4.2 Resumo da etapa com uso de IA pelos participantes 45

6.1 Comandos principais do NVDA para programadores cegos 76
6.2 Comandos úteis do sistema operacional Windows 76
6.3 Comandos básicos de terminal (CMD ou PowerShell) 76
6.4 Comandos úteis do Visual Studio Code com leitor de tela 77

x

Lista de Figuras

3.1 Esquema Representativo da Metodologia 23
3.2 Etapas dos Experimentos Práticos e Coleta de Dados 29

4.1 Tela de Implementação do P1 . 35
4.2 Tela de Implementação do P2 . 36
4.3 Tela de Implementação do P3 . 37
4.4 Tela de Implementação do P4 . 38
4.5 Tela de Implementação do P5 . 39
4.6 Tela de Implementação do P6 . 40
4.7 Tela de Implementação do P7 . 40
4.8 Tela de Implementação do P8 . 41
4.9 Tela de Implementação do P9 . 42
4.10 Tela de Implementação do P10 . 43
4.11 Comparação de tempo de execução com e sem IA 51
4.12 Frequência de Subcategorias por Categoria 57

xi

Lista de Abreviações

Abreviação Descrição

CAST Center for Applied Special Technology

CEP Comitê de Ética e Pesquisa

DV Deficiente Visual

IA Inteligência Artificial

IDE Ambiente de Desenvolvimento Integrado (Integrated Development Environment)

JAWS Job Access With Speech

NVDA NonVisual Desktop Access

OCR Optical Character Recognition (Reconhecimento Óptico de Caracteres)

SBC Sociedade Brasileira de Computação

SI Sistema de Informação

STI Sistemas Tutores Inteligentes

TA Tecnologia Assistiva

TTS Text-to-Speech (Texto para Fala)

UDI Universal Design for Instruction)

UDL Universal Design for Learning)

VC Visão Computacional

xii

VS Code Visual Studio Code

WCAG Acessibilidade para Conteúdo Web

xiii

Caṕıtulo 1

Introdução

“A tecnologia é melhor quando une
as pessoas.”

– Matt Mullenweg

Vivemos em uma sociedade cada vez mais mediada por tecnologias digitais, nas
quais saber programar deixou de ser apenas uma habilidade técnica para se tornar
um diferencial educacional e profissional em diversas áreas (Caldeira et al., 2025). A
programação está presente em soluções que envolvem saúde, educação, mobilidade,
comunicação e entretenimento, configurando-se como uma ferramenta poderosa de
participação social, inovação e autonomia. No entanto, para que essas oportunidades
sejam acesśıveis a todas as pessoas, é imprescind́ıvel que o ensino de programação
seja pensado sob a ótica da inclusão. Nesse contexto, a acessibilidade, entendida
como a capacidade de garantir que todas as pessoas, independentemente de suas
limitações f́ısicas, sensoriais ou cognitivas, possam interagir com produtos e ambi-
entes em igualdade de condições (Web Accessibility Initiative (WAI), 2022) assume
um papel central. No campo da computação, isso implica repensar ambientes de
desenvolvimento, linguagens de programação e metodologias pedagógicas para que
estudantes cegos, por exemplo, possam superar barreiras visuais que historicamente
os exclúıram de percursos formativos na área (Albusays et al., 2017) (Mountapm-
beme et al., 2022). Como aponta Bonito (2015), garantir acessibilidade no desen-
volvimento tecnológico é essencial para reduzir barreiras, independentemente do
envolvimento direto dos indiv́ıduos com a programação.

No entanto, o campo da programação de software, que frequentemente se apoia
em interfaces gráficas e ambientes de desenvolvimento visuais, apresenta desafios
significativos para a participação de pessoas cegas (Sribunruangrit et al., 2004).
A ausência de padrões definidos e diretrizes espećıficas para codificação acesśıvel
dificulta a navegação e a compreensão desses ambientes, ampliando as barreiras para
aqueles que dependem de tecnologias assistivas, como leitores de tela (Albusays et al.,

1

Caṕıtulo 1. Introdução 2

2017). Além disso, a crescente complexidade dos Ambientes de Desenvolvimento
Integrado (IDE) e o uso intensivo de ferramentas visuais tornam esses desafios ainda
mais expressivos para programadores cegos (Storer et al., 2021).

Apesar dos avanços em tecnologias assistivas, como leitores de tela e editores de
código adaptáveis, programadores cegos ainda enfrentam dificuldades, especialmente
na depuração de código e na compreensão de mensagens de erro, impactando sua
autonomia no desenvolvimento de software (Pandey et al., 2021) (Mountapmbeme
et al., 2022).

Diante dessas dificuldades, pesquisadores têm buscado soluções que reduzam as bar-
reiras enfrentadas por programadores cegos. Uma dessas alternativas é a aplicação
de Inteligência Artificial (IA) em IDEs, possibilitando a automação de tarefas e o
suporte interativo no desenvolvimento de código (Veiderma Holmberg, 2021).

De acordo com Zawacki-Richter et al. (2019), a IA tem um papel essencial na per-
sonalização do aprendizado, utilizando Sistemas Tutores Inteligentes para adaptar
materiais e trajetórias educacionais às necessidades individuais dos estudantes. Es-
ses sistemas, baseados em modelos de aprendizado, algoritmos e redes neurais, são
capazes de tomar decisões sobre os conteúdos mais adequados para cada estudante,
fornecendo suporte cognitivo e promovendo a interação durante o processo de apren-
dizagem. Além disso, a IA pode contribuir para a aprendizagem colaborativa ao
facilitar a formação de grupos adaptativos, auxiliar na interação online e fornecer
resumos de discussões que ajudam os tutores humanos a orientar os estudantes de
forma mais eficaz. Outro aspecto relevante é o uso da realidade virtual inteligente,
que permite experiências imersivas de aprendizado por meio de agentes virtuais que
atuam como professores, facilitadores ou colegas de estudo. Dessa forma, a IA am-
plia as possibilidades educacionais, personalizando não apenas o ensino individual,
mas também promovendo a colaboração e o engajamento dos estudantes (Zawacki-
Richter et al., 2019).

Em programação, a IA impulsiona a eficiência por meio de assistentes virtuais que
sugerem código, identificam erros e facilitam a compreensão de conceitos complexos
(Philbin, 2023). Ferramentas baseadas em IA (Pudari, 2022) oferecem soluções ino-
vadoras, como sistemas de sugestão de código baseados em aprendizado de máquina,
que proporcionam recursos de autocompletar e correções em tempo real. Essas fer-
ramentas não apenas agilizam o processo de codificação, mas também tornam a na-
vegação eficiente, permitindo que os programadores cegos tenham uma experiência
mais fluida e independente. Além disso, a capacidade da IA em traduzir texto para
fala e vice-versa oferece uma interação mais acesśıvel com o código, enquanto tec-
nologias de reconhecimento de imagem possibilitam descrições auditivas detalhadas
de elementos visuais (Khan et al., 2020; Abhishek et al., 2022). A personalização da
experiência do usuário, adaptando a interface com base nas preferências individuais,
demonstra o potencial da IA em criar ambientes de estudo mais inclusivos e adapta-
dos às necessidades espećıficas dos estudantes com deficiência visual (Vinaykarthik
et al., 2022).

Caṕıtulo 1. Introdução 3

Assim, a IA não só permite a superação de barreiras tradicionais, como também
pode promover uma educação em programação mais acesśıvel e inclusiva. Entre-
tanto, a aplicação da IA na acessibilidade para programadores cegos ainda é pouco
explorada, como aponta Pandey (2023), que identificou uma escassez de pesquisas
investigando o uso da IA para aprimorar a experiência de desenvolvedores com de-
ficiência visual. Essa lacuna impede uma compreensão mais aprofundada sobre o
papel dessas tecnologias no desenvolvimento de habilidades programacionais para
esse público espećıfico.

1.1 Problema de Pesquisa

Dentro desse contexto, a acessibilidade para estudantes programadores cegos se des-
taca como um desafio persistente, enquanto a IA surge como uma potencial solução
para superar essas barreiras. Este estudo visa explorar a interseção desses desafios,
examinando como soluções de IA podem ser aplicadas para aprimorar a acessibi-
lidade e a produtividade na programação para estudantes com deficiência visual.
Ao examinar essa interação complexa, buscamos não apenas compreender os de-
safios enfrentados, mas também identificar oportunidades para criar ambientes de
programação mais inclusivos e eficazes.

As pesquisas preexistentes de Nascimento e Brandão (2019), Pandey et al. (2021),
Hu” et al. (2020), Pandey et al. (2022) e Schanzer et al. (2019) abordam os desafios
enfrentados por indiv́ıduos com deficiência visual na programação, proporcionando
uma compreensão das dificuldades encontradas por esses profissionais, especialmente
no ambiente de trabalho. Embora esses estudos explorem os desafios enfrentados
por profissionais com deficiência visual na programação, uma lacuna persiste em
relação à experiência desses indiv́ıduos durante sua formação acadêmica. A transição
para o mercado de trabalho e o impacto das barreiras educacionais e de formação
são áreas pouco examinadas, o que limita nossa compreensão de como preparar
adequadamente esses estudantes para desafios profissionais futuros.

A literatura existente (Nascimento e Brandão, 2019; Pandey et al., 2021) frequen-
temente foca nas barreiras profissionais, deixando uma lacuna significativa no que
tange às dificuldades educacionais e de formação. Assim, nossa investigação visa
preencher essa lacuna, analisando tanto as barreiras quanto as soluções potenciais
para a formação de programadores com deficiência visual.

Diante desse cenário, o uso de ferramentas de IA integradas a IDEs, como assistentes
de código e sistemas de autocompletar, surge como uma possibilidade de reduzir essas
barreiras, oferecendo suporte automatizado à escrita, depuração e compreensão de
código. No entanto, ainda são escassos os estudos que analisam de forma emṕırica
o impacto efetivo dessas tecnologias sobre a acessibilidade e a produtividade de
estudantes cegos em ambientes reais de desenvolvimento. Dessa forma, torna-se
necessário compreender em que medida a incorporação da IA nesses ambientes pode
contribuir para a inclusão digital e para o aprimoramento das práticas de ensino de

Caṕıtulo 1. Introdução 4

programação voltadas a esse público. Com base nessas lacunas, esta pesquisa busca
responder às seguintes perguntas de pesquisa:

• Q1: Como o uso de ferramentas de Inteligência Artificial (IA) em Ambientes
de Desenvolvimento Integrado (IDEs) impacta a acessibilidade de estudantes
programadores cegos?

• Q2: De que forma essas ferramentas influenciam a produtividade e o tempo
de execução das tarefas de programação realizadas por esses estudantes?

• Q3: Quais são as percepções e desafios relatados pelos participantes em relação
ao uso de IA em comparação ao desenvolvimento sem suporte automatizado?

1.2 Relevância

A inclusão de pessoas com deficiência visual no campo da programação não é apenas
uma questão de equidade, mas uma necessidade social urgente diante da crescente
demanda por diversidade e inovação na área de tecnologia. A exclusão de profissio-
nais com habilidades diversas, como os programadores cegos, representa não apenas
uma perda de talentos valiosos, mas também limita a pluralidade de perspectivas no
desenvolvimento de soluções tecnológicas. A falta de acessibilidade em ambientes de
desenvolvimento de software compromete não apenas a aprendizagem, mas também
as oportunidades acadêmicas e profissionais de estudantes com deficiência visual.
Garantir que esses estudantes possam programar de forma autônoma e produtiva é
um passo essencial para a promoção da equidade educacional e para a ampliação da
diversidade nos cursos e profissões da área de Computação.

Do ponto de vista cient́ıfico e tecnológico, a pesquisa se justifica pela escassez de
estudos emṕıricos que avaliem o impacto real da IA na acessibilidade de IDEs.
Embora existam investigações sobre leitores de tela e ferramentas assistivas, ainda
há pouca compreensão sobre como os recursos baseados em IA, como assistentes
de código e sistemas de autocompletar, podem mitigar barreiras enfrentadas por
programadores cegos e transformar sua experiência de aprendizado. Dessa forma,
este estudo contribui para preencher uma lacuna na literatura, fornecendo dados e
análises que podem orientar o desenvolvimento de tecnologias mais inclusivas.

Sob a perspectiva ética, a pesquisa também se insere em um debate mais amplo
sobre o papel da tecnologia na construção de uma sociedade mais justa e inclusiva.
A ética da inclusão exige que se promovam ambientes educacionais e profissionais
equitativos, em que as diferenças sejam respeitadas e as barreiras estruturais se-
jam ativamente enfrentadas (Alves et al., 2025). Por outro lado, a ética no uso
da Inteligência Artificial também deve ser considerada: embora a IA ofereça gran-
des oportunidades de apoio e personalização para pessoas com deficiência, seu uso
precisa ser orientado por prinćıpios de transparência, respeito à autonomia e não
discriminação. Neste contexto, explorar o potencial da IA como recurso assistivo
implica também refletir sobre seu uso responsável, inclusivo e comprometido com o

Caṕıtulo 1. Introdução 5

bem comum (Brotosaputro et al., 2024). Além disso, a formação de programado-
res cegos apresenta uma relevância estratégica. Apoiar esses estudantes desde sua
trajetória educacional é essencial para capacitá-los a ocupar espaços profissionais
de forma autônoma e produtiva. Trata-se não apenas de remover barreiras técni-
cas (Brotosaputro et al., 2024), mas de reconhecer a importância de um processo
formativo acesśıvel, senśıvel às suas necessidades e potencialidades.

1.3 Objetivos

Diante dos desafios enfrentados por estudantes cegos no ensino de programação,
especialmente no uso de Ambientes de Desenvolvimento Integrado (IDEs) e ferra-
mentas baseadas em Inteligência Artificial (IA), este estudo propõe um olhar sobre
os aspectos de acessibilidade, usabilidade e autonomia no contexto educacional.

O presente estudo tem como objetivo geral analisar de que forma ferramentas de
Inteligência Artificial (IA), quando integradas a Ambientes de Desenvolvimento In-
tegrado (IDEs), podem contribuir para a acessibilidade e a produtividade de estu-
dantes programadores cegos, a partir da realização de um experimento comparativo
entre práticas de programação com e sem o uso de IA. Além disso, busca compre-
ender as percepções, desafios e estratégias de uso dessas tecnologias no contexto
educacional, de modo a subsidiar o desenvolvimento de práticas pedagógicas e solu-
ções tecnológicas mais inclusivas.

No grupo dos objetivos de pesquisa, busca-se:

1. compreender as principais barreiras de acessibilidade enfrentadas por estudan-
tes cegos em ambientes de programação;

2. investigar a integração entre leitores de tela e ferramentas de IA, avaliando
seus impactos na compreensão do código;

3. analisar as percepções dos participantes sobre o uso dessas ferramentas, consi-
derando aspectos como confiabilidade, clareza das sugestões e dependência de
ajuda externa;

4. explorar as estratégias individuais adotadas por esses estudantes para superar
limitações técnicas e cognitivas impostas pelas ferramentas utilizadas.

Já os objetivos de intervenção visam:

1. desenvolver e aplicar um experimento estruturado que compare o desempenho
dos estudantes com e sem o suporte de IA;

2. testar o uso de diferentes ferramentas de programação e IA sob a ótica da
acessibilidade; e

3. propor recomendações técnicas e pedagógicas que favoreçam a construção de
ambientes de aprendizagem mais inclusivos e eficazes, com o uso de IA, espe-
cialmente no ensino de programação para pessoas com deficiência visual.

Caṕıtulo 1. Introdução 6

Essa distinção entre investigação e aplicação permite maior clareza metodológica
e contribui para que os resultados do estudo possam ser replicados, adaptados e
discutidos por educadores, desenvolvedores e pesquisadores da área da acessibilidade
digital.

1.4 Hipóteses

O presente estudo parte de um conjunto de hipóteses que orientam a análise dos
dados e a discussão dos resultados, a partir do qual formulam-se as seguintes hipó-
teses:

• A primeira hipótese (H1) considera que o uso de ferramentas de IA integra-
das a leitores de tela proporciona um aumento significativo na acessibilidade
dos ambientes de desenvolvimento, permitindo maior fluidez na navegação e
compreensão do código pelos participantes.

• A segunda hipótese (H2) propõe que o uso dessas ferramentas de IA contribui
para ampliar a autonomia dos estudantes cegos durante o processo de progra-
mação.

• A terceira hipótese (H3) parte do reconhecimento de que ainda persistem bar-
reiras significativas de acessibilidade, mesmo com o uso de IA. Essas limitações
são atribúıdas à baixa usabilidade de algumas interfaces, à dificuldade de lei-
tura de sugestões de código não verbalizadas e à integração parcial entre as
ferramentas de IA e os leitores de tela.

• A quarta hipótese (H4) considera que a percepção de produtividade e a eficá-
cia no uso das ferramentas de IA variam conforme o ńıvel de familiaridade dos
estudantes com a linguagem de programação, com o ambiente de desenvolvi-
mento e com as próprias tecnologias assistivas.

• Por fim, a quinta hipótese (H5) assume que a comparação entre as etapas com
e sem o uso de IA revelará diferenças relevantes no desempenho dos estudantes,
especialmente quanto ao tempo de execução das tarefas, à correção dos erros
e à qualidade final dos códigos produzidos.

Essas hipóteses sustentam o processo investigativo desta dissertação, oferecendo um
quadro interpretativo que orienta a análise dos dados coletados e a proposição de
melhorias concretas para a acessibilidade no ensino de programação.

1.5 Contribuições

Diante do delineamento desta pesquisa e da realização de um experimento com
estudantes cegos, este trabalho apresenta contribuições relevantes para o campo
da acessibilidade no ensino de programação. Ao analisar o uso de ferramentas de
IA em conjunto com IDEs, a pesquisa avalia como essas tecnologias impactam a

Caṕıtulo 1. Introdução 7

usabilidade, a autonomia e a experiência prática de estudantes cegos ao programar.
A partir dessa abordagem, o estudo contribui para a compreensão mais aprofundada
das limitações técnicas e pedagógicas enfrentadas por esse público.

A investigação também permite identificar barreiras espećıficas como falhas na lei-
tura de sugestões de código, baixa integração com leitores de tela e dificuldades de
navegação por teclado e documentar estratégias espontâneas adotadas pelos parti-
cipantes para contornar esses desafios. Ao reunir esses dados, a pesquisa fornece
subśıdios para o aprimoramento de ferramentas educacionais e para a formação do-
cente, com foco em práticas mais inclusivas. As percepções dos participantes ofere-
cem uma perspectiva rica e pouco explorada na literatura, reforçando a importância
de abordagens centradas no usuário com deficiência.

Por fim, destaca-se como contribuição metodológica a estruturação de um procedi-
mento experimental acesśıvel, baseado em tarefas práticas, entrevistas e observações
remotas, que pode ser replicado por outros pesquisadores. Ao propor recomendações
técnicas e pedagógicas a partir de dados emṕıricos, este trabalho avança no debate
sobre inclusão digital e equidade no acesso à tecnologia, demonstrando que a IA,
quando acesśıvel e bem implementada, pode ampliar significativamente a autonomia
e o protagonismo de estudantes cegos no processo de aprendizagem em Computação.

1.6 Organização do Trabalho

Este trabalho está estruturado em sete caṕıtulos. O Caṕıtulo 1 apresenta a intro-
dução, destacando o problema de pesquisa, a relevância da pesquisa, os objetivos,
as hipóteses e as contribuições esperadas. No Caṕıtulo 2, é realizada uma revisão
bibliográfica, abordando tecnologias assistivas para programadores cegos e soluções
baseadas em Inteligência Artificial (IA) em Ambientes de Desenvolvimento Integrado
(IDEs). O Caṕıtulo 3 detalha a metodologia utilizada, incluindo o levantamento
bibliográfico, os critérios de seleção de participantes e a condução dos experimen-
tos. Além disso, são apresentados os fundamentos teóricos do estudo de caso e da
análise de conteúdo. Em seguida, no Caṕıtulo 4, são apresentados os resultados da
pesquisa, com análises quantitativas e qualitativas sobre o impacto da IA na acessi-
bilidade e produtividade de estudantes programadores cegos. O Caṕıtulo 5 discute
os achados do estudo, relacionando-os com trabalhos correlatos e destacando desa-
fios e oportunidades para a melhoria das ferramentas de IA. O Caṕıtulo 6 apresenta
diretrizes técnicas e pedagógicas para promover a acessibilidade e a autonomia de
estudantes cegos no ensino de programação, com foco no uso de leitores de tela,
sistemas operacionais, IDEs e ferramentas de IA. Por fim, o Caṕıtulo 7 conclui a
pesquisa, sintetizando os principais resultados e sugerindo direções para trabalhos
futuros.

Caṕıtulo 2

Revisão Bibliográfica

“Inclusão é simplesmente fazer tudo
pensando nas pessoas que existem.
E não considerando pessoas que
você gostaria que existissem. ”

– Claudia Werneck

O presente caṕıtulo tem como objetivo fundamentar teoricamente os principais con-
ceitos que sustentam esta pesquisa. Para isso, são discutidos temas como acessibili-
dade digital, recursos de tecnologia assistiva voltados para pessoas com deficiência
visual, o uso de inteligência artificial no contexto educacional, especialmente no
ensino de programação, e a acessibilidade em ambientes de desenvolvimento inte-
grado (IDEs). Além disso, são apresentadas experiências educacionais de estudantes
cegos e estratégias pedagógicas, com ênfase na construção de sequências didáticas
inclusivas, que contribuem para a formação de um referencial sólido e alinhado aos
objetivos da pesquisa.

2.1 Acessibilidade Digital e Inclusão Educacional

A acessibilidade digital é definida como a prática de projetar sistemas e serviços
digitais de modo que possam ser utilizados por todas as pessoas, inclusive aquelas
com deficiências visuais, auditivas, motoras ou cognitivas (Chemnad e Othman,
2024). De acordo com a Web Accessibility Initiative (WAI) (2022), isso implica
garantir que esses usuários possam acessar, navegar, perceber e interagir com o
conteúdo digital de forma plena e autônoma. Os prinćıpios da acessibilidade digital
envolvem a criação de ambientes inclusivos, sem barreiras, que promovam equidade
no acesso à informação e à participação.

No contexto educacional e tecnológico, essa preocupação torna-se ainda mais ur-
gente. À medida que a educação e os serviços se digitalizam, torna-se essencial

8

Caṕıtulo 2. Revisão Bibliográfica 9

assegurar que estudantes com deficiência não sejam exclúıdos das oportunidades de
aprendizagem e desenvolvimento. A acessibilidade digital, portanto, além de repre-
sentar uma responsabilidade social e uma exigência legal, constitui um pilar funda-
mental para a inclusão, o empoderamento e a autonomia de todos os indiv́ıduos na
era da inteligência artificial (Chemnad e Othman, 2024).

Particularmente no ensino superior, a acessibilidade deve ser compreendida como
um direito fundamental e um requisito indispensável para a construção de ambientes
educacionais verdadeiramente inclusivos (Wilkens et al., 2021). O Universal Design
for Learning - UDL é um modelo pedagógico criado pela organização Center for
Applied Special Technology - CAST1 na década de 1980, segundo Espada-Chavarria
et al. (2023) o UDL é uma abordagem focada no ensino, aprendizagem, desenvol-
vimento curricular e avaliação. Baseia-se em pesquisas sobre os processos cerebrais
e no uso das Tecnologias de Informação e Comunicação - TIC, com o objetivo de
responder às diferenças individuais na aprendizagem. Assim, o UDL é aplicado
como uma estratégia de ensino que visa eliminar barreiras por meio de um modelo
flex́ıvel e adaptável, que inclui todos os estudantes e estimula o desenvolvimento
de suas habilidades (Bray et al., 2024). Essa abordagem reconhece a diversidade
entre os estudantes e propõe, desde o planejamento, estratégias que favoreçam a
participação de todos, por meio da flexibilidade e da oferta de escolhas na forma
de engajamento e aprendizagem. Fundamentado na neurociência, o UDL valoriza a
variabilidade dos aprendizes e busca promover a inclusão por meio da diversificação
de recursos e métodos pedagógicos. Seu arcabouço é sustentado por três prinćıpios
centrais: múltiplos meios de engajamento, voltados à motivação e ao envolvimento
ativo; múltiplos meios de representação, que garantem diferentes formas de acesso às
informações; e múltiplos meios de ação e expressão, que possibilitam aos estudantes
demonstrar seus conhecimentos de maneiras diversas (Bray et al., 2024).

Já o Universal Design for Instruction - UDI é um conceito relativamente recente na
educação voltada para universidades. É definido como o modelo que desenvolve mé-
todos instrucionais para que todos os estudantes com diversas necessidades de apren-
dizagem tenham acesso equitativo ao ensino (Espada-Chavarria et al., 2023). O UDI
aplicado ao ensino universitário não se refere apenas à acessibilidade para pessoas
com deficiência. É uma abordagem verdadeiramente universal porque considera as
necessidades futuras de todos os estudantes ao projetar o conteúdo e o ensino. Este
processo é usado para identificar e eliminar barreiras no ensino, mantendo o rigor
acadêmico e impulsionando a aprendizagem dos estudantes, independentemente de
seus conhecimentos e preferências, reduzindo ao mı́nimo a necessidade de adaptações
especiais. É baseado em prinćıpios como: os processos de ensino devem promover
a interação e a comunicação entre estudantes e entre estudantes e professores, e o
ensino deve ser projetado para ser acolhedor e inclusivo.

Instrumentos como o UDL e o UDI reforçam a importância de incorporar a acessibi-
lidade desde a concepção das práticas pedagógicas, e não como um recurso comple-

1https://udlguidelines.cast.org

Caṕıtulo 2. Revisão Bibliográfica 10

mentar. Essa abordagem assegura que as experiências de ensino sejam planejadas
para contemplar a diversidade dos estudantes desde o ińıcio do curso, estendendo-se
também aos espaços digitais. Nesse contexto, refletir sobre a diversidade implica,
necessariamente, considerar a acessibilidade digital como parte integrante de um
processo educacional inclusivo.

Garantir que ambientes virtuais de aprendizagem sejam acesśıveis para pessoas com
deficiência visual exige o uso de estratégias espećıficas que promovam a interação
autônoma e significativa com plataformas e conteúdos digitais. Isso inclui o uso
de recursos de tecnologia assistiva, como leitores de tela, linhas braille e softwares
de ampliação, que dependem diretamente de um design digital fundamentado nas
diretrizes internacionais de acessibilidade, como as Diretrizes de Acessibilidade para
Conteúdo Web-WCAG 2. Como aponta Cavalcante (2022), a ausência de elementos
como estrutura semântica adequada, textos alternativos e navegação acesśıvel com-
promete a usabilidade desses recursos, limitando a participação efetiva e o direito à
educação. A autora enfatiza que a acessibilidade digital deve ser entendida como um
direito humano, sendo essencial que professores, desenvolvedores e instituições sejam
capacitados para planejar e implementar práticas acesśıveis, possibilitando às pes-
soas com deficiência visual vivenciarem o espaço digital em igualdade de condições,
com autonomia e protagonismo.

2.2 Recursos de Tecnologia Assistiva

Tecnologia Assistiva (TA) é um campo interdisciplinar que reúne produtos, servi-
ços, práticas e estratégias com o objetivo de ampliar ou restaurar as habilidades
funcionais de pessoas com deficiência, promovendo sua autonomia, independência e
inclusão social. Esses recursos podem variar desde dispositivos simples até sistemas
complexos, sempre com foco na melhoria da qualidade de vida e na participação
ativa dos indiv́ıduos em diferentes contextos sociais. Trata-se, portanto, de uma
área que busca eliminar barreiras e favorecer a equidade no acesso a oportunidades
e direitos (Bastos et al., 2023).

Existem alguns sinônimos para tratar da temática acerca de TA, como “Ajudas
Técnicas”, “Tecnologia de Apoio”, “Tecnologia Adaptativa” e “Adaptações”, mas a
expressão Tecnologia Assistiva é uma tradução brasileira do termo Assistive Te-
chnology a respeito do qual diversos páıses apresentam percepções e classificações
diferentes, conforme citado por Galvão Filho (2009) apud Bastos et al. (2023).

A tecnologia assistiva assume muitas formas, desde cadeiras de rodas a aparelhos
auditivos e próteses. No contexto da acessibilidade digital, refere-se a ferramentas de
software e hardware que permitem que pessoas com deficiência acessem e interajam
com plataformas web, aplicativos e dispositivos digitais, garantindo uma navegação
mais autônoma e equitativa. Nesse escopo mais amplo de acessibilidade digital,

2https://www.w3c.br

Caṕıtulo 2. Revisão Bibliográfica 11

destacam-se também os recursos de TA voltados especificamente para a área da
programação. Tais ferramentas são projetadas para permitir que pessoas com defi-
ciência não apenas acessem conteúdos, mas também possam interagir com ambientes
de desenvolvimento e participar ativamente da construção de soluções computacio-
nais (Eckhardt et al., 2019). Essas tecnologias ajudam a preencher a lacuna entre as
habilidades dos indiv́ıduos e as exigências das tarefas computacionais, promovendo
a inclusão e a igualdade de oportunidades na indústria tecnológica.

Entre os diversos recursos, destaca-se o leitor de tela como uma das ferramentas mais
essenciais para pessoas com deficiência visual, sendo sua compreensão indispensável
para o desenvolvimento deste estudo.

2.2.1 Leitores de Tela

Os recursos de tecnologia assistiva para pessoas com deficiência visual na programa-
ção desempenham um papel crucial na promoção da inclusão digital e na facilitação
do acesso ao desenvolvimento de software. Entre as ferramentas mais importantes
estão os leitores de tela que, conforme Wataya (2006), descrevem o conteúdo exibido
no monitor de computador ou ainda de um código-fonte de página da Internet. Esta
tecnologia é chamada de “text-to-speech” ou TTS. Dentre os leitores de tela, os mais
conhecidos são o Job Access With Speech3 - JAWS (Ndlovu et al., 2023) e NonVisual
Desktop Access4 - NVDA (Amin et al., 2024), que permitem a interação com interfa-
ces de desenvolvimento ao converter texto visual em descrições auditivas detalhadas.
Esses leitores de tela tornam posśıvel a navegação, a edição e a depuração de código,
oferecendo uma interface auditiva que guia os programadores através dos elementos
visuais (Amin et al., 2024).

Os leitores de tela são ferramentas essenciais para programadores cegos, desempe-
nhando um papel crucial na sua capacidade de acessar, interagir e produzir código de
maneira eficiente, permitindo que indiv́ıduos com deficiência visual utilizem compu-
tadores e dispositivos móveis de forma autônoma (Amin et al., 2024), ou seja, sem o
leitor de tela, a pessoa com deficiência visual não teria acesso às informações visuais
necessárias para programar autonomamente. Cabe destacar que esses leitores de tela
não foram originalmente concebidos para a leitura de código de programação, mas,
com a devida configuração, é posśıvel utilizá-los de forma eficiente. No Caṕıtulo 6,
traremos configurações e comandos essenciais para programadores com deficiência
visual.

Os leitores de tela, amplamente utilizados em ńıvel internacional, são o NVDA e
o JAWS, mas é importante destacar o Dosvox, que é um sistema para microcom-
putadores da linha PC que se comunica com o usuário através de śıntese de voz,
desenvolvido no Brasil pela Universidade Federal do Rio de Janeiro (UFRJ) (dos
Santos Borges, 2000). O Dosvox é um sistema que oferece um ambiente próprio

3https://support.freedomscientific.com/Downloads/JAWS
4https://www.nvaccess.org/

Caṕıtulo 2. Revisão Bibliográfica 12

e simplificado para pessoas cegas interagirem com o computador por meio de voz,
diferindo dos leitores de tela, como o JAWS, que apenas interpretam e narram as
interfaces gráficas de sistemas operacionais e programas já existentes. O Dosvox pos-
sui grande relevância no contexto educacional brasileiro, pois foi um dos primeiros
sistemas voltados à acessibilidade de pessoas cegas e ainda é amplamente utilizado
em escolas e universidades. Sua popularidade se deve ao conjunto de ferramentas
integradas: como editor de textos, navegador e ambiente de programação, projeta-
das para uso autônomo por pessoas com deficiência visual. Assim, a familiaridade
de muitos estudantes com o Dosvox reforça sua importância como ferramenta de in-
clusão digital e como ponto de partida para o aprendizado de recursos de tecnologia
assistiva mais complexas, como IDEs integradas a leitores de tela modernos.

Além dos leitores de tela e sintetizadores de voz, existem outros recursos de TA
desenvolvidos para atender às múltiplas necessidades de pessoas com deficiência,
sendo fundamentais para garantir o acesso pleno a conteúdos e funcionalidades no
ambiente digital. Dentre eles: (1) o Project CodeTalk 5, implementado como um
plugin para o VisualStudio, mas com técnicas amplamente aplicáveis a qualquer
IDE visual, que aborda sistematicamente as barreiras enfrentadas por usuários com
deficiência visual - DV; (2) o Emacspeak 6, que é uma interface de fala que permite que
usuários com DV interajam de forma independente e eficiente com o computador, e o
(3) Copilot Voice7, que é um recurso útil do Microsoft Copilot que permite interagir
com o assistente de IA usando comandos de voz em linguagem natural. A seguir,
são exploradas algumas das soluções baseadas em IA e seus impactos na experiência
de programadores cegos.

2.2.2 Soluções de IA em Ambientes de Desenvolvimento Integrado
(IDEs)

As soluções de Inteligência Artificial (IA) em Ambientes de Desenvolvimento In-
tegrado (IDEs) têm revolucionado a forma como os programadores interagem com
o código, oferecendo uma gama de ferramentas que aumentam a produtividade e
a acessibilidade (Alizadehsani et al., 2022). Ferramentas como o GitHub Copilot
(Wermelinger, 2023) e TabNine Ai Code Assistant (Corso et al., 2024) utilizam al-
goritmos avançados de aprendizado de máquina para fornecer sugestões de código
em tempo real, autocompletar trechos de programação e corrigir erros, o que pode
ser especialmente útil para programadores cegos. Além disso, soluções de debugging
baseadas em IA, como o DeepCode AI (Nadukuda, 2023) e o Amazon CodeGuru
(Sikha e Others, 2024), identificam vulnerabilidades e problemas de desempenho
no código, proporcionando feedback imediato que pode ser acessado auditivamente.
Essas inovações não apenas agilizam o processo de desenvolvimento, mas também
tornam o ambiente de codificação mais inclusivo, permitindo que programadores

5https://www.microsoft.com/en-us/research/project/codetalk/
6https://emacspeak.sourceforge.net
7https://www.microsoft.com/pt-br/microsoft-copilot/

Caṕıtulo 2. Revisão Bibliográfica 13

com deficiência visual naveguem, escrevam e depurem código com maior eficiência e
independência. A seguir, apresentaremos algumas soluções de IA integradas a IDEs.

O GitHub Copilot pode ser acessado por meio de um plugin integrado a editores
como o Visual Studio Code, onde fornece sugestões de código de forma automática
enquanto o usuário digita ou mediante comandos espećıficos, como pressionar Alt-
ou Enter (Wermelinger, 2023). As sugestões aparecem em fonte cinza e itálica
no local do cursor e são chamadas de ghost text, podendo ser aceitas com Tab ou
exploradas em versões alternativas por meio do comando Ctrl-Enter, que exibe até
dez variações em um painel separado. Essa funcionalidade visa acelerar a escrita
de código ao completar trechos automaticamente com base no contexto do que está
sendo digitado. Assim, neste trabalho, sempre que nos referirmos à IA integrada ao
Visual Studio Code estamos nos referindo especificamente ao GitHub Copilot.

Já a IA integrada ao Replit8, chamada Replit Agent, tem se mostrado uma ferra-
menta muito promissora para tornar a programação acesśıvel a pessoas com defici-
ência visual. Ela atua como um assistente de programação inteligente, ajudando a
simplificar tarefas complexas e facilitando o desenvolvimento de código por meio de
comandos em linguagem natural, o que é especialmente valioso para programadores
cegos ou com baixa visão.

No Google Colab 9 temos o novo assistente de codificação com foco em IA, integrado
diretamente no ambiente do Colab. Esse assistente funciona como um colabora-
dor agente projetado para entender profundamente o código, intenções e fluxos de
trabalho em tempo real. Ele vai além da simples conclusão de código, ajudando
ativamente em todo o seu notebook, incluindo múltiplas células, com tarefas como
geração de código, depuração, limpeza de dados e engenharia de recursos (Llerena-
Izquierdo et al., 2024).

Por fim, temos o ChatGPT que é definido por Mohamed et al. (2024) como um mo-
delo de inteligência artificial generativa baseado em grandes modelos de linguagem
(Large Language Models - LLMs), cuja aplicação tem se expandido significativa-
mente em áreas como medicina, educação, comunicação e, especialmente, engenharia
de software. Segundo os autores, o ChatGPT tem sido amplamente utilizado por de-
senvolvedores tanto para tarefas relacionadas à codificação (como escrita de trechos
de código, depuração e análise) quanto para atividades não técnicas, como aux́ılio
na escrita, preparação para entrevistas técnicas e realização de testes de Turing.
Essa versatilidade evidencia o papel emergente do ChatGPT como uma ferramenta
cŕıtica no apoio à produtividade e à criatividade de desenvolvedores, destacando seu
potencial na construção de um cenário cada vez mais orientado à colaboração entre
humanos e sistemas de IA.

Embora ferramentas como o Google Colab, o Replit e o ChatGPT sejam amplamente
utilizadas por programadores, inclusive aqueles com deficiência visual, é importante

8https://replit.com
9http://colab.research.google.com

Caṕıtulo 2. Revisão Bibliográfica 14

destacar que essas plataformas não foram originalmente concebidas com o objetivo
de atuar como assistentes de acessibilidade. Seu desenvolvimento esteve voltado
para a facilitação do aprendizado, experimentação e produtividade em programação
de forma geral, sem foco espećıfico em recursos inclusivos.

2.2.3 Implementações de IA para Acessibilidade Digital

Com os avanços recentes, a IA passou a ser incorporada a muitas tecnologias, apri-
morando significativamente sua funcionalidade e tornando as tarefas cotidianas mais
acesśıveis (Philbin, 2023). A IA não só potencializa as ferramentas existentes, mas
tem se consolidado como um novo recurso de TA em si, oferecendo soluções ino-
vadoras para atender às mais diversas demandas de acessibilidade (Pandey, 2023).
Essa capacidade de adaptação proporciona experiências mais inclusivas, centradas
nas necessidades espećıficas de cada usuário. A tecnologia assistiva é descrita por
Galvão Filho (2022) como um conjunto de recursos e serviços que têm o objetivo
de proporcionar ou ampliar habilidades funcionais de pessoas com deficiência, pro-
movendo assim a inclusão e a autonomia. Este conceito abrange desde dispositivos
simples, como lupas, até tecnologias mais complexas, como softwares de comunica-
ção aumentativa. Apesar do aumento das opções de recursos de tecnologia assistiva e
da acessibilidade ampliada às tecnologias convencionais, as pessoas com deficiências
ainda encontram dificuldades para aprender a programar, dado que a escrita de có-
digo é uma tarefa complexa mesmo após a compreensão dos recursos e da semântica
de uma linguagem de programação (Baker et al., 2019).

Para superar esses desafios, o IntelliCode foi desenvolvido como uma solução que eli-
mina barreiras, permitindo que indiv́ıduos com deficiências alcancem seus objetivos
de programação (Kumar et al., 2023). Utilizando comandos de voz, este ambiente
de programação torna a escrita de código mais acesśıvel, promovendo a indepen-
dência e a inclusão de programadores com diferentes necessidades. O IntelliCode
(Kumar et al., 2023) é um ambiente de programação baseado em voz, desenvolvido
para auxiliar programadores com deficiência visual ou cegueira, bem como aqueles
com lesões motoras, como lesões por esforço repetitivo, que dificultam a programa-
ção. Kumar et al. (2023) indicam que cerca de 2 em cada 100 desenvolvedores de
software possuem alguma deficiência visual, e muitos continuam a enfrentar desafios
significativos na prática da programação.

Apesar de o IntelliCode apresentar-se como uma solução projetada especificamente
para programadores cegos, ele não se configura como a melhor ou mais adotada
alternativa por esse público. Isso ocorre por diversos motivos identificados tanto na
literatura quanto na prática dos participantes desta pesquisa. Primeiro, trata-se de
um ambiente restrito: embora baseado em voz, ele não possui integração plena com
leitores de tela amplamente utilizados, como NVDA e JAWS, o que limita seu uso
em fluxos de trabalho reais. Além disso, seu conjunto de funcionalidades ainda é
reduzido quando comparado a IDEs modernas, carecendo de recursos avançados de
depuração, navegação por código, personalização de atalhos e extensões. Soma-se a

Caṕıtulo 2. Revisão Bibliográfica 15

isso o fato de que o IntelliCode não se integra a ferramentas contemporâneas de IA
generativa, como ChatGPT, Copilot ou os assistentes inteligentes do Colab e Re-
plit, que hoje compõem parte importante da prática de programação, inclusive para
pessoas cegas. Os próprios autores (Kumar et al., 2023) reconhecem limitações na
robustez do reconhecimento de voz e na ausência de suporte para tarefas complexas.
Assim, embora importante como iniciativa, o IntelliCode não atende plenamente
às necessidades reais de acessibilidade e produtividade dos desenvolvedores cegos,
reforçando a necessidade de investigar como as ferramentas de IA generativa podem
preencher lacunas deixadas por soluções anteriores.

Outro estudo de implementação com IA é o de Brotosaputro et al. (2024) que inves-
tiga o impacto dos recursos de TA baseados em IA na acessibilidade para pessoas
com deficiência. A pesquisa combina abordagens qualitativas e quantitativas para
avaliar a usabilidade, eficiência e satisfação do usuário ao utilizar soluções integradas
de IA em comparação com tecnologias assistivas tradicionais. Os resultados indicam
que ferramentas baseadas em IA proporcionam uma melhoria significativa na exe-
cução de tarefas, reduzindo o tempo de conclusão e aumentando a autonomia dos
usuários. Entre as aplicações analisadas, destacam-se sistemas de reconhecimento
de fala e de emoções, que demonstraram alto potencial para aprimorar a comunica-
ção e a interação de pessoas com deficiência. No entanto, o estudo também aponta
desafios, como a necessidade de adaptações para diferentes perfis de usuários e a
importância da acessibilidade digital equitativa.

Complementando essa perspectiva sobre o potencial da IA na acessibilidade, outro
estudo relevante é o de M S et al. (2024) apresenta o WebSight, uma extensão de na-
vegador que utiliza um gerador de descrições de imagens baseado em IA integrando-
se de forma eficiente com um servidor Flask, reconhecimento óptico de caracteres
(OCR) e um modelo dedicado de gerador de descrições de imagens. Esta extensão
melhora sistematicamente a acessibilidade web ao substituir os atributos ’alt’ das
imagens por descrições meticulosamente geradas. Essa abordagem contribui signifi-
cativamente para a inclusão digital, fornecendo aos usuários com deficiência visual
informações precisas e contextualmente ricas, já que as pessoas com deficiência visual
ainda têm dificuldade para usar a maioria dos sites.

2.3 IA no Ensino Superior

Zawacki-Richter et al. (2019) realizaram uma revisão sistemática sobre o uso da Inte-
ligência Artificial (IA) na educação superior, identificando suas principais aplicações,
como sistemas tutores inteligentes, aprendizado personalizado e automação de tare-
fas administrativas. O foco da pesquisa foi mapear tendências e identificar lacunas
no envolvimento dos educadores no desenvolvimento e uso dessas tecnologias. Os
autores destacam que, embora a IA tenha avançado significativamente na área edu-
cacional, há uma lacuna na participação ativa dos educadores no desenvolvimento
dessas tecnologias, o que pode comprometer sua efetividade pedagógica. Além disso,

Caṕıtulo 2. Revisão Bibliográfica 16

o estudo aponta desafios como a falta de padronização das ferramentas de IA e a
necessidade de pesquisas mais voltadas para acessibilidade e inclusão digital.

De maneira semelhante, Michel-Villarreal e Vilalta-Perdomo (2023) exploram os
impactos da inteligência artificial generativa no ensino superior, destacando seus de-
safios e oportunidades. Discutem como ferramentas como o ChatGPT podem perso-
nalizar o ensino, apoiar professores, desenvolver habilidades cŕıticas nos estudantes
e prepará-los para o mercado de trabalho. Além disso, abordam preocupações éti-
cas, como privacidade de dados e posśıveis vieses nos algoritmos, bem como desafios
técnicos que podem afetar a adoção da tecnologia em diferentes instituições.

Corroborando com essas discussões, Aler Tubella et al. (2024) exploram estratégias
para incorporar a IA responsável no ensino superior. Através de uma revisão da
literatura existente e entrevistas com 11 especialistas de cinco páıses, os autores
identificam competências, recursos e desafios na implementação de uma IA confiável
na educação superior. As conclusões são apresentadas na forma de recomendações
tanto para educadores quanto para formuladores de poĺıticas, visando traduzir di-
retrizes em práticas de ensino, capacitando a próxima geração a contribuir para
uma IA ética e segura. Na recomendação para educadores, destaca-se a importân-
cia de incluir explicitamente, nos cursos, os requisitos da High-Level Expert Group
(HLEG)10, que são eles: agência e supervisão humana (garantir autonomia e con-
trole humano sobre a IA); robustez técnica e segurança (assegurar que o sistema
seja preciso, seguro e resiliente); privacidade e governança de dados (proteger dados
pessoais e garantir seu uso responsável); transparência (tornar decisões e processos
compreenśıveis e rastreáveis); diversidade, não discriminação e equidade (evitar vi-
eses e promover inclusão); bem-estar social e ambiental (contribuir para impactos
positivos na sociedade e no meio ambiente); responsabilidade (estabelecer mecanis-
mos claros de prestação de contas e auditoria), quando pertinentes, deixando claro
como eles se conectam ao conteúdo ministrado. Recomenda-se também integrar
metodologias de desenvolvimento de IA Confiável, como procedimentos de registro,
técnicas de coleta de dados com preservação de privacidade e ferramentas de ex-
plicabilidade, além de definir resultados de aprendizagem claros, que contemplem
três ńıveis: apreciação (identificar aplicabilidade e dimensões dos requisitos), aná-
lise (deliberar sobre implementações e implicações éticas) e aplicação (selecionar e
implementar soluções técnicas).

Para os formuladores de poĺıticas Aler Tubella et al. (2024), sugere-se coordenar a
introdução da IA Confiável nos curŕıculos por meio de estratégias nacionais, garan-
tindo uniformidade, investir na formação e contratação de especialistas para fortale-
cer a expertise docente e incentivar a colaboração interdisciplinar, valorizando-a no
curŕıculo e atribuindo créditos a atividades que integrem diferentes áreas do conhe-
cimento.

10https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai

Caṕıtulo 2. Revisão Bibliográfica 17

2.4 Trabalhos correlatos

Alguns estudos têm identificado problemas e limitações de acessibilidade enfrentados
por estudantes com deficiência visual em cursos de Computação. Baker, Bennett e
Ladner (Baker et al., 2019) realizaram uma pesquisa qualitativa e descobriram que
os estudantes enfrentam desafios diários que vão desde o acesso aos materiais e a
realização das atividades até o relacionamento com os professores. Estes desafios
são amplamente discutidos em pesquisas recentes, como a de Zen et al. (2023),
que identificou dificuldades espećıficas com materiais didáticos e a interação com
IDEs, e a de Mountapmbeme et al. (2022), que examinou barreiras ao longo de todo
o percurso educacional, desde o acesso a materiais até interações com professores.
Adicionalmente, Chemnad e Othman (2024) realizaram uma revisão sistemática que
foca nas aplicações de IA para acessibilidade digital, destacando a importância da IA
na melhoria da acessibilidade para pessoas com deficiência. As subseções seguintes
discutirão esses trabalhos em detalhes, proporcionando uma visão abrangente dos
desafios e soluções propostas na literatura existente sobre acessibilidade na educação
em programação para estudantes com deficiência visual.

2.4.1 Experiências Educacionais em Disciplinas de Programação de
Computadores: uma Análise Qualitativa na Perspectiva dos
Estudantes com Deficiência Visual

O trabalho de Zen et al. (2023) apresenta uma pesquisa qualitativa que identifica
desafios e limitações enfrentados por estudantes com deficiência visual em discipli-
nas de Programação de Computadores, a partir de entrevistas com seis estudantes
e egressos de cursos superiores de Computação. Os resultados mostram que muitos
materiais utilizados nos cursos, como livros didáticos e apostilas, não são totalmente
acesśıveis aos recursos de tecnologia assistiva utilizados pelos entrevistados. A falta
de um padrão estabelecido para a verbalização do código-fonte por leitores de tela
resulta em omissão ou transmissão inadequada de informações importantes, dificul-
tando a compreensão do código.

Os estudantes também relataram dificuldades de interação com os IDEs adotados nas
disciplinas, sendo frequentemente necessário recorrer a ferramentas alternativas com
funcionalidades reduzidas, o que demandava mais tempo e esforço cognitivo, cau-
sando frustração e impactando negativamente o engajamento e a dedicação. Além
disso, a falta de treinamento e familiaridade com essas tecnologias ao longo do curso
pode prejudicar a formação profissional dos estudantes.

Os resultados destacam a importância de conhecer as necessidades e preferências dos
estudantes com deficiência visual para melhorar a acessibilidade das metodologias e
ferramentas de ensino de programação. Professores de programação, professores de
sala de recursos e educadores especiais precisam estar familiarizados com os recursos
de tecnologia assistiva e suas configurações para auxiliar os estudantes. Promover

Caṕıtulo 2. Revisão Bibliográfica 18

a conscientização e fornecer treinamento adequado aos educadores é essencial para
criar um ambiente de aprendizagem inclusivo e eficaz.

2.4.2 Abordando as Barreiras de Acessibilidade na Programação
para Pessoas com Deficiência Visual: Uma Revisão da Lite-
ratura

Addressing Accessibility Barriers in Programming for People with Visual
Impairments: A Literature Review

Mountapmbeme et al. (2022) examinam as experiências educacionais de programa-
dores cegos em cursos de ciência da computação no ensino superior. Através de
uma pesquisa e entrevistas com 10 programadores cegos, os autores identificam e
discutem os desafios enfrentados por esses estudantes, incluindo barreiras no acesso
a materiais didáticos, interações com professores e a utilização de recursos de tecno-
logia assistiva.

Os resultados indicam que os estudantes cegos enfrentam dificuldades significativas
em todas as etapas de seu percurso educacional, desde a acessibilidade dos materi-
ais didáticos e realização de tarefas até o trabalho com professores. Essas barreiras
aumentam a sensação de isolamento, diminuem a motivação, especialmente quando
as tarefas são inacesśıveis, e impedem os estudantes de aprender todos os conceitos
abordados em seus programas de graduação. O estudo também aborda as implica-
ções desses desafios para a criação de culturas mais acolhedoras para programadores
com deficiência dentro da comunidade educacional de computação e sugere áreas
para colaboração futura entre educadores e pesquisadores para remover essas bar-
reiras.

2.4.3 Acessibilidade digital na era da inteligência artificial — Aná-
lise bibliométrica e revisão sistemática

Digital accessibility in the era of artificial intelligence—Bibliometric
analysis and systematic review

A acessibilidade digital, conforme Chemnad e Othman (2024), envolve o design
de sistemas e serviços digitais para permitir o acesso a indiv́ıduos com deficiências,
incluindo deficiências visuais, auditivas, motoras ou cognitivas. A IA tem o potencial
de aprimorar a acessibilidade para pessoas com deficiências e melhorar sua qualidade
de vida geral.

Esta revisão sistemática (Chemnad e Othman, 2024), abrangendo artigos acadêmi-
cos de 2018 a 2023, foca nas aplicações de IA para acessibilidade digital. A pesquisa
enfatiza o foco predominante na acessibilidade digital impulsionada por IA para de-
ficiências visuais, revelando uma lacuna cŕıtica no atendimento a deficiências de fala
e audição, transtorno do espectro autista, distúrbios neurológicos e deficiências mo-
toras. Isso destaca a necessidade de uma distribuição mais equilibrada das pesquisas

Caṕıtulo 2. Revisão Bibliográfica 19

para garantir suporte equitativo para todas as comunidades com deficiências. O es-
tudo também apontou a falta de adesão aos padrões de acessibilidade nos sistemas
existentes, ressaltando a urgência de uma mudança fundamental no design de solu-
ções para pessoas com alguma deficiência. No geral, esta pesquisa sublinha o papel
vital da IA acesśıvel na prevenção da exclusão e discriminação, instando uma abor-
dagem abrangente para a acessibilidade digital que atenda às diversas necessidades
de deficiência.

2.4.4 Avaliação de acessibilidade dos principais aplicativos móveis
assistivos dispońıveis para pessoas com deficiência visual

Accessibility evaluation of major assistive mobile applications available
for the visually impaired

Bhagat et al. (2024) realizaram uma avaliação da acessibilidade de aplicativos mó-
veis assistivos voltados para pessoas com deficiência visual, analisando quatro das
principais ferramentas baseadas em IA e Visão Computacional (VC). O estudo con-
siderou critérios como precisão, tempo de resposta, confiabilidade, acessibilidade,
privacidade, eficiência energética e usabilidade, com dados diretos de usuários cegos
e com baixa visão. Os resultados indicaram que, embora esses aplicativos forneçam
suporte significativo para navegação e reconhecimento de objetos, ainda apresentam
desafios na compatibilidade com leitores de tela e na interpretação de ambientes
complexos. Além disso, questões como latência na resposta e falta de personaliza-
ção foram apontadas como barreiras para uma experiência mais intuitiva e eficiente.
Esse estudo reforça a necessidade de melhorias na integração entre IA e tecnologias
assistivas, alinhando-se ao presente trabalho ao destacar a importância da aces-
sibilidade digital no desenvolvimento de soluções inclusivas para programadores e
usuários cegos.

2.4.5 Diretrizes de Acessibilidade em Ambientes de Desenvolvi-
mento Integrado para Estudantes Cegos

Zen (2024) desenvolveu uma pesquisa focada na acessibilidade de Ambientes de
Desenvolvimento Integrado (IDEs) para estudantes cegos, identificando barreiras
enfrentadas no uso dessas ferramentas e propondo diretrizes para torná-las mais
acesśıveis. Analisou dificuldades como a compatibilidade limitada com leitores de
tela, a ausência de feedback auditivo adequado e a complexidade na navegação por
código, que impactam diretamente a autonomia e a produtividade dos programa-
dores cegos. Com base nos achados, a pesquisa apresentou recomendações para o
design de IDEs mais inclusivos, sugerindo melhorias na interface, integração com
recursos de tecnologia assistiva e adaptação de funcionalidades de depuração e au-
tocompletar. Este estudo dialoga diretamente com a presente pesquisa, pois reforça
a necessidade de aprimoramento na acessibilidade das ferramentas de programação
e a importância da IA como um meio para otimizar a experiência desses usuários,
garantindo maior inclusão no ensino e na prática da computação.

Caṕıtulo 2. Revisão Bibliográfica 20

2.4.6 Usuários de leitores de tela na era do Vibe Coding: adapta-
ção, empoderamento e novo cenário de acessibilidade

Screen Reader Users in the Vibe Coding Era: Adaptation, Empow-
erment, and New Accessibility Landscape

O trabalho de Chen et al. (2025) investiga de forma aprofundada como programa-
dores que utilizam leitores de tela interagem com assistentes de código baseados em
inteligência artificial avançada, como o GitHub Copilot, no contexto do paradigma
emergente de vibe coding. Trata-se de um estudo longitudinal de duas semanas
com 16 participantes, envolvendo tutoriais, execução de tarefas de programação que
simulavam cenários reais, uso livre do assistente no cotidiano e entrevistas de acom-
panhamento. O objetivo central foi compreender como essas ferramentas podem
empoderar usuários com deficiência visual e quais novos desafios surgem com sua
adoção. Os resultados mostram que assistentes de código avançados podem ampliar
a autonomia e a produtividade, permitindo que desenvolvedores realizem tarefas an-
tes consideradas de dif́ıcil execução, como o desenvolvimento de interfaces gráficas,
além de reduzir barreiras históricas de acessibilidade. Por outro lado, o estudo iden-
tifica desafios relevantes, como dificuldades em expressar claramente à IA a intenção
do código desejado, na revisão das respostas geradas, na alternância entre múltiplas
visões no ambiente de desenvolvimento, na manutenção da consciência situacional
e na aprendizagem de recursos avançados. Também se discute o equiĺıbrio entre
automação e controle, evidenciando que, embora modos mais autônomos aumentem
a eficiência, muitos usuários preferem interações que exijam confirmação expĺıcita
para garantir previsibilidade e segurança.

Observa-se que os estudos analisados oferecem contribuições relevantes sobre acessi-
bilidade digital e o uso da Inteligência Artificial em contextos educacionais e profissi-
onais, mas diferem do escopo e da abordagem adotados nesta dissertação. Trabalhos
como os de Zen et al. (2023) e Mountapmbeme et al. (2022) concentram-se na iden-
tificação de barreiras enfrentadas por estudantes cegos no ensino de programação,
sem avançar para a proposição e avaliação de soluções práticas. Já Chemnad e Oth-
man (2024) realizam uma revisão sistemática sobre acessibilidade digital na era da
IA, enfatizando a importância de estratégias inclusivas, mas sem aplicação direta ao
contexto de ambientes de desenvolvimento de código.

O estudo de Bhagat et al. (2024) aprofunda limitações de aplicativos móveis voltados
a pessoas cegas, porém restringe-se ao domı́nio das interfaces móveis, não abordando
o processo de aprendizagem em programação. Adicionalmente, Zen (2024) propõe
diretrizes de acessibilidade para IDEs voltadas a estudantes cegos, contribuindo com
recomendações de design; contudo, não avalia empiricamente o impacto pedagógico
dessas diretrizes no processo de ensino-aprendizagem. Por sua vez, Chen et al. (2025)
evidencia avanços na autonomia e adaptação de programadores cegos em ambientes
modernos de codificação, mas mantém o foco em experiências profissionais, sem dis-
cutir implicações pedagógicas. Diante disso, esta dissertação diferencia-se ao integrar
as dimensões de acessibilidade e aprendizagem, propondo e avaliando ferramentas de

Caṕıtulo 2. Revisão Bibliográfica 21

IA em IDEs para investigar empiricamente seus impactos no ensino de programação
para estudantes cegos. Assim, o trabalho transcende as abordagens predominante-
mente descritivas, apresentando contribuições práticas e pedagógicas no ensino de
computação.

Caṕıtulo 3

Metodologia

Este estudo configura-se como uma pesquisa qualitativa, pois busca entender as ex-
periências, percepções e desafios enfrentados por programadores cegos ao utilizar
ferramentas de Inteligência Artificial (IA) e Ambientes de Desenvolvimento Inte-
grado (IDEs). O estudo busca compreender o fenômeno em seu contexto real, sem a
interferência de variáveis controladas, o que é caracteŕıstico da abordagem qualita-
tiva. Especificamente, trata-se de um estudo de caso exploratório, que investiga um
fenômeno em profundidade em um contexto espećıfico (neste caso, a acessibilidade
de ferramentas de programação para estudantes cegos). O estudo de caso permite
uma análise detalhada e contextualizada das experiências dos participantes. A es-
colha pelo estudo de caso justifica-se pela necessidade de uma análise aprofundada
das interações dos participantes com as ferramentas assistidas por IA, permitindo a
identificação de desafios, vantagens e adaptações necessárias para uma maior aces-
sibilidade.

A pesquisa também pode ser considerada descritiva, pois busca descrever as carac-
teŕısticas e percepções dos participantes em relação à usabilidade e à integração
das ferramentas de IA e IDEs com recursos de tecnologia assistiva. Em resumo, a
pesquisa é uma combinação de qualitativa, estudo de caso exploratório e descritiva,
focando na análise das experiências de programadores cegos em um contexto espećı-
fico. A metodologia envolve as seguintes etapas, conforme Figura 3.1: levantamento
bibliográfico, experimentos práticos, coleta de dados e análise englobando a análise
qualitativa e a análise de conteúdo, que serão detalhadas nas subseções a seguir.

3.1 Levantamento Bibliográfico

A pesquisa iniciou-se com um levantamento bibliográfico, visando identificar as prin-
cipais barreiras enfrentadas por estudantes com deficiência visual no aprendizado
de programação, bem como compreender as soluções e tecnologias existentes, in-
cluindo aquelas baseadas em IA, que têm sido propostas para abordar esses desafios.

22

Caṕıtulo 3. Metodologia 23

Figura 3.1: Esquema Representativo da Metodologia

Diferente de um mapeamento sistemático que segue protocolos rigidamente definidos
para a seleção e categorização de estudos, este levantamento adotou uma aborda-
gem sistematizada, reunindo procedimentos estruturados para identificar, selecionar
e analisar criticamente a literatura existente. Essa estratégia permitiu uma busca
ampla e orientada por critérios claros, sem, contudo, restringir a investigação às
etapas formais de um protocolo ŕıgido. A revisão bibliográfica foi conduzida entre
setembro de 2024 e maio de 2025, considerando bases acadêmicas de referência na
área de Computação e Educação, como ACM Digital Library, IEEE Xplore, Scopus,
SpringerLink e Google Scholar. As buscas utilizaram combinações de palavras-chave
em português e inglês, incluindo “artificial intelligence”, “accessibility”, “blind pro-
grammers”, “assistive technology”, “screen reader”, “programming education”e“inte-
grated development environment”. Foram inclúıdos artigos publicados entre 2019 e
2025 que tratassem do uso de IA, recursos de tecnologia assistiva e/ou práticas edu-
cacionais voltadas à inclusão de pessoas cegas em contextos de programação. Após
a remoção de duplicidades e a análise de t́ıtulos e resumos, dezesseis estudos foram
selecionados, dos quais seis se destacaram pela relevância teórica e metodológica,
sendo discutidos ao longo do Caṕıtulo 2.

O levantamento teve como objetivo fornecer um panorama atualizado das pesquisas
sobre acessibilidade na programação, guiando as próximas etapas do estudo. Os
critérios de inclusão priorizaram artigos que abordavam barreiras enfrentadas por
estudantes cegos, soluções educacionais, revisão de recursos de tecnologia assistiva
e ferramentas de IA aplicadas ao ensino de programação. Trabalhos genéricos sobre
acessibilidade digital, sem foco na programação, foram exclúıdos da análise.

A sistematização dos dados obtidos seguiu uma categorização temática, agrupando
os estudos conforme (i) barreiras enfrentadas, (ii) soluções tecnológicas existentes,
(iii) impacto da IA na acessibilidade e (iv) estratégias educacionais para ensino de
programação. Essa abordagem possibilitou a śıntese cŕıtica dos achados, servindo
como base para as etapas subsequentes de coleta de dados.

Diante das lacunas identificadas no levantamento bibliográfico, especialmente no que
se refere à escassez de estudos emṕıricos que investiguem, na prática, a interação

Caṕıtulo 3. Metodologia 24

de estudantes cegos com ambientes de programação com e sem o suporte de fer-
ramentas de Inteligência Artificial, delineou-se um experimento dividido em fases,
visando observar e comparar o desempenho e a experiência de programadores cegos
em diferentes cenários.

3.2 Experimentos Práticos

Antes de apresentar os procedimentos adotados na realização dos experimentos prá-
ticos, faz-se necessário contextualizar o perfil dos participantes envolvidos na pes-
quisa.

3.2.1 Descrição dos Participantes

Critérios de Inclusão e Exclusão

A seleção dos participantes ocorreu de forma intencional, por meio de comu-
nidades virtuais compostas por pessoas cegas que estudam na área de Com-
putação. O primeiro contato foi estabelecido através do grupo de e-mails ce-
gos programadores@googlegroups.com, dedicado à troca de experiências e discus-
sões sobre acessibilidade em tecnologias de programação. A partir desse grupo, foi
posśıvel obter acesso ao grupo de WhatsApp denominado “Pessoas Cegas Progra-
madoras”, que, à época, contava com aproximadamente 211 membros de diferentes
regiões do Brasil. No grupo, foi enviada uma mensagem-convite apresentando os
objetivos da pesquisa e convidando os interessados a participarem do estudo.

Os critérios de inclusão definidos foram:

• ser pessoa cega (cegueira total ou baixa visão grave);

• estudar na área de Computação;

• possuir experiência prévia em pelo menos uma linguagem de programação e
uma IDE;

• apresentar familiaridade com o uso de leitores de tela (como NVDA, JAWS ou
equivalentes);

• dispor de computador e acesso à internet para a realização dos experimentos
de forma remota.

Os critérios de exclusão envolveram:

• ausência de familiaridade mı́nima com ambientes de desenvolvimento (IDEs)
ou com o uso de leitores de tela;

• indisponibilidade de equipamentos ou conexão estável que permitissem a exe-
cução das tarefas.

Caṕıtulo 3. Metodologia 25

Após a triagem das respostas obtidas por meio do formulário, dez participantes
que atenderam aos critérios estabelecidos foram convidados a integrar o estudo.
Buscou-se contemplar diferentes ńıveis de experiência, contextos acadêmicos e re-
giões geográficas, de modo a garantir uma amostra representativa e diversificada das
experiências de pessoas cegas com a programação.

Sobre a Pesquisa

Os dez participantes com deficiência visual, Tabela 3.1, tinham idades entre 23 e 54
anos e eram oriundos de diferentes regiões do Brasil, incluindo Bahia, Pernambuco,
Rio de Janeiro e São Paulo. Todos apresentavam cegueira total, sendo sete pessoas
cegas de nascença e três que adquiriram a deficiência ao longo da vida. Observa-se
uma predominância do gênero masculino no grupo, composto por oito homens e
duas mulheres.

Em relação à formação acadêmica, os participantes apresentavam ńıveis educacionais
diversos, variando desde cursos técnicos até pós-graduação em áreas relacionadas à
tecnologia. Cinco deles estavam matriculados no curso de Sistemas de Informação,
três cursavam Análise e Desenvolvimento de Sistemas, um era estudante de ńıvel
técnico em Desenvolvimento de Sistemas e outro já havia conclúıdo a graduação,
estando atualmente matriculado em uma pós-graduação em Arquitetura e Desen-
volvimento Java.

Quanto à experiência em programação, o tempo de prática variou entre dois e vinte
e quatro anos. Alguns participantes relataram ter iniciado os estudos de forma
autodidata antes de ingressarem formalmente em cursos da área, conforme eviden-
ciado na Tabela 3.2. Foi mencionada a familiaridade com diversas linguagens de
programação, como Python, Java, C, C++, JavaScript e PHP. Além disso, os par-
ticipantes relataram o uso de uma ampla gama de recursos de tecnologia assistiva,
com destaque para leitores de tela como NVDA, JAWS, TalkBack, VoiceOver, Orca
e WebVox, além de ferramentas como o Be My Eyes e o DOSVOX.

Esses dados revelam um grupo com trajetórias formativas heterogêneas, distintos
ńıveis de experiência prática e diferentes graus de adaptação às tecnologias assistivas.
Essa diversidade enriquece a análise dos dados, permitindo compreender de forma
mais abrangente os desafios enfrentados por programadores cegos e as estratégias que
empregam para superar as barreiras de acessibilidade no processo de aprendizagem
e prática da programação.

Além disso, a composição desse grupo de participantes fornece uma base para in-
vestigar como fatores como tempo de experiência, formação acadêmica e tipo de
deficiência visual influenciam na interação com ambientes de desenvolvimento e fer-
ramentas de inteligência artificial. Essa perspectiva é essencial para identificar pa-
drões de uso, necessidades espećıficas e potenciais caminhos para a construção de
ambientes de aprendizagem mais inclusivos e eficazes.

Caṕıtulo 3. Metodologia 26

Tabela 3.1: Perfil dos Participantes
Px Idade Gênero Origem D.V. Formação
P1 27 Masc. BA Cego de nas-

cença
Pós graduação em arquite-
tura e desenvolvimento java
(online)

P2 54 Masc. PE Desenvolveu
deficiência
visual

Sistemas de Informação
(online)

P3 33 Masc. SP Cego de nas-
cença

Sistemas de Informação
(presencial)

P4 25 Fem. BA Cega de nas-
cença

Sistemas de Informação
(presencial)

P5 23 Masc. SP Cego de nas-
cença

Técnico Desenvolvimento
de Sistemas (presencial)

P6 26 Masc. RJ Desenvolveu
deficiência
visual

Sistemas de Informação
(presencial)

P7 34 Masc. PE Cego de nas-
cença

Sistemas de Informação
(presencial)

P8 23 Fem. SP Cega de nas-
cença

Análise e Desenvolvimento
de Sistemas (prresencial)

P9 35 Masc. SP Desenvolveu
deficiência
visual

Análise e Desenvolvimento
de Sistemas (online)

P10 26 Masc. SP Cego de nas-
cença

Análise e Desenvolvimento
de Sistemas (presencial)

Nota: Px representa o participante x, onde “x” indica o número do participante.

3.2.2 Descrição do Experimento

Os experimentos foram conduzidos de forma remota, utilizando a plataforma Google
Meet1 para facilitar a interação e gravação das atividades, com o consentimento livre
e esclarecido dos participantes. Portanto, este trabalho foi desenvolvido em confor-
midade com os prinćıpios éticos aplicáveis à pesquisa envolvendo seres humanos. O
projeto foi submetido para o Comitê de Ética em Pesquisa (CEP), registrado na
Plataforma Brasil sob o número de CAAE: 81692324.0.0000.0053, com data de sub-
missão em 19/07/2024. Todos os participantes foram devidamente informados sobre
os objetivos do estudo, os procedimentos adotados e os posśıveis benef́ıcios e riscos
associados à participação. O Termo de Consentimento Livre e Esclarecido (Apên-
dice A) foi obtido de todos os envolvidos antes do ińıcio das atividades, assegurando
o respeito à autonomia e aos direitos dos participantes.

Assim, os experimentos foram realizados nos computadores pessoais dos participan-

1https://meet.google.com

Caṕıtulo 3. Metodologia 27

Tabela 3.2: Linguagens, recursos assistivos e experiência dos participantes
Px Linguagens Utilizadas Recursos de Tecnologias

Assistivas
Experiência/Estudo
com Programação

P1 Java, C#, TypeScript Leitores de tela NVDA
(computador) e TalkBack
(Android)

Trabalha há 5 anos, es-
tuda há 12 anos

P2 Clipper, Assem-
bler, Delphi, Pascal,
Python

JAWS e DOSVOX 24 anos

P3 Python, JavaScript JAWS, NVDA, TalkBack e
VoiceOver

2 anos

P4 C, C++, Python,
Java, JavaScript,
PHP, BGT

NVDA e VoiceOver Iniciou o curso em 2018,
autodidata desde 2013

P5 C#, PHP, Python, C,
JavaScript

NVDA, DOSVOX e Jishu
(Android)

6 anos

P6 Python, Java, React,
React Native

TalkBack, VoiceOver,
JAWS, Narrator, NVDA

8 anos

P7 Python Leitor de tela 6 anos
P8 C#, C++, C, Python,

Java, HTML, CSS
NVDA e Be My Eyes (des-
critor de imagens)

3 anos e meio

P9 PHP, JavaScript, um
pouco de Python

NVDA (PC) e Google Talk-
Back (smartphone)

Estuda programação há
15 anos; como deficiente
visual desde 2018

P10 Python, Java, C,
PHP, JavaScript

NVDA, TalkBack (celular),
Orca, WebVox

3 anos

Nota: Px representa o participante x, onde “x” indica o número do participante.

tes, logo já estavam configurados com ferramentas e leitores de tela que utilizavam
rotineiramente, como NVDA e JAWS. A pesquisadora observou as sessões em tempo
real e gravou a tela de cada transmissão para análise posterior. A pesquisa foi rea-
lizada individualmente com cada participante. Essas configurações garantiram que
o ambiente fosse o mais próximo posśıvel do cotidiano de cada participante, permi-
tindo uma análise realista das dificuldades enfrentadas e do impacto das ferramentas
de IA no suporte ao aprendizado e produtividade. Além disso, o uso remoto da pla-
taforma Google Meet e as gravações asseguraram a coleta de dados detalhada e
completa para análise de dados, respeitando as condições éticas do estudo.

Os Experimentos Práticos foram estruturados, conforme a sequência didática (Apên-
dice B), em três etapas principais, descritas na Figura 3.2, sendo a primeira dedicada
à apresentação e contextualização dos experimentos. Durante os 15 minutos iniciais,
os participantes foram informados sobre os objetivos da pesquisa. Foram explicadas
as regras do estudo, incluindo a distinção entre as duas atividades: a primeira sem o
uso de IA e a segunda com o suporte dessas ferramentas. Para garantir a integridade

Caṕıtulo 3. Metodologia 28

do experimento, foi estabelecido que, caso a IDE utilizada possúısse funcionalidades
de IA já integradas, os participantes deveriam escrever o código inicialmente em um
bloco de notas, assegurando que o mesmo fosse desenvolvido do zero. Além disso,
foram anotados quais leitores de tela e ferramentas de IA seriam utilizados, como o
NVDA, JAWS, ChatGPT e GitHub Copilot. A metodologia adotada permitiu que
os participantes gerenciassem livremente o tempo para a execução das tarefas, ga-
rantindo que pudessem concluir as atividades sem interferências externas, enquanto
o pesquisador permanecia dispońıvel apenas para suporte técnico quando solicitado.

3.2.3 Fase 1: sem IA

Chamamos a segunda etapa de Fase 1 – sem IA, conforme Figura 3.2. Nela, estu-
dantes cegos realizaram tarefas de programação utilizando exclusivamente recursos
tradicionais de tecnologia assistiva, como leitores de tela e softwares acesśıveis (por
exemplo, WebVox2). Essa configuração permitiu observar, de forma isolada, as es-
tratégias cognitivas, operacionais e tecnológicas adotadas pelos participantes. A
atividade prática consistiu na implementação de um algoritmo para organizar uma
sequência numérica em ordem crescente, sem o uso de funções prontas ou ferra-
mentas de Inteligência Artificial. Os participantes podiam optar por utilizar uma
lista predefinida ou permitir a inserção manual dos valores. Foram autorizadas con-
sultas técnicas por meio de pesquisas online, desde que não envolvessem soluções
baseadas em IA. Durante a execução, analisaram-se os principais desafios enfrenta-
dos, o tempo necessário para a implementação e os tipos de erros cometidos.

O experimento foi realizado de forma remota, com os participantes utilizando seus
próprios dispositivos, ambientes de desenvolvimento integrados (IDEs) e leitores de
tela já previamente configurados e conhecidos, buscando preservar a naturalidade
das condições em que costumam programar. Cada sessão foi acompanhada em
tempo real pela pesquisadora, por meio de videochamadas no Google Meet. Para
fins de registro e análise posterior, as sessões foram gravadas com consentimento
dos participantes, e utilizou-se a extensão IA TacTiq3 para realizar a transcrição
automática das falas, facilitando o levantamento dos dados qualitativos.

Durante a atividade, registraram-se o tempo de conclusão, as dificuldades encontra-
das e observações feitas pelos participantes, seja por anotações ou relatos verbais.
As coletas ocorreram de forma remota e śıncrona, com uso de compartilhamento de
tela para acompanhamento integral da tarefa.

3.2.4 Fase 2: com IA

Na terceira etapa ou fase 2-com IA, os participantes resolveram novamente o mesmo
problema que envolvia a ordenação de uma lista de números, mas desta vez utilizando
ferramentas assistidas por IA, como sistemas de autocompletar e geração de código,

2https://webvox.en.softonic.com/chrome/extension
3http://tactiq.io

Caṕıtulo 3. Metodologia 29

incluindo o ChatGPT. Com isso, puderam tanto revisar e aprimorar o código que
haviam produzido na etapa anterior quanto explorar novas formas de implementação
sugeridas pela IA. O foco dessa etapa foi explorar como a IA poderia ajudar na
identificação e correção de erros do algoritmo já implementado na etapa anterior.
Os participantes foram incentivados a usar a IA para analisar o código produzido,
identificar problemas e propor soluções automatizadas. O objetivo principal era
avaliar como as ferramentas baseadas em IA impactavam a eficiência na depuração,
o tempo de execução e a qualidade geral dos códigos ajustados. Embora o tempo
para a realização das atividades fosse gerenciado livremente pelos participantes, ele
foi monitorado para análise comparativa, considerando que a dificuldade estava não
na criação do algoritmo, mas na melhoria e correção do código com o suporte da IA.

3.3 Coleta de Dados

Entrevista semi-estruturada e Questionário Online

Após as atividades práticas, foi conduzida uma quarta etapa (Figura 3.2) de coleta
de informações e discussão, com duração de 30 minutos. Foi realizada uma entrevista
semi-estruturada (Apêndice C) e aplicado um questionário acesśıvel (Apêndice D)
para registrar as percepções dos participantes sobre as atividades realizadas. Essas
etapas permitiram compreender as barreiras espećıficas enfrentadas, os benef́ıcios
percebidos no uso da IA e as dificuldades relacionadas à integração de leitores de
tela com as ferramentas de programação.

Figura 3.2: Etapas dos Experimentos Práticos e Coleta de Dados

Caṕıtulo 3. Metodologia 30

A última etapa (Figura 3.2) consistiu na proposição de melhorias, com duração de
15 minutos. Os participantes foram incentivados a sugerir mudanças que poderiam
facilitar a integração entre leitores de tela e ferramentas de IA. Essa etapa forneceu
subśıdios importantes para o aperfeiçoamento das tecnologias utilizadas, com foco
em garantir acessibilidade e usabilidade mais eficientes.

Os dados coletados foram analisados qualitativamente, a partir dos relatos dos parti-
cipantes, e quantitativamente, comparando o tempo de execução das tarefas e tempo
para correção das atividades com e sem IA, que serão discutidos no Caṕıtulo 4. Essa
abordagem permitiu identificar as limitações e os benef́ıcios das ferramentas adota-
das, além de fornecer dados para a replicação e adaptação dessa prática em outros
contextos educacionais.

3.4 Análise

Para a análise dos dados qualitativos coletados durante o experimento, adotou-se a
técnica de Análise de Conteúdo, conforme proposta por Bardin (2011), com foco na
identificação de categorias temáticas emergentes a partir das entrevistas, das obser-
vações e dos formulários aplicados aos participantes. Essa abordagem foi escolhida
por sua capacidade de revelar padrões de sentido, percepções e estratégias subjeti-
vas em contextos educacionais, especialmente em estudos que envolvem sujeitos com
deficiência.

3.4.1 Análise Qualitativa

A análise qualitativa dos dados teve como objetivo interpretar as percepções, expe-
riências e significados atribúıdos pelos participantes às atividades de programação
realizadas com e sem o uso de Inteligência Artificial (IA). Essa abordagem buscou
compreender de que maneira as ferramentas baseadas em IA influenciaram aspectos
como acessibilidade, autonomia, produtividade e satisfação dos estudantes cegos ao
interagir com diferentes ambientes de desenvolvimento integrados (IDEs).

Os dados qualitativos foram obtidos a partir de três fontes principais: (i) entrevistas
semiestruturadas realizadas após as etapas experimentais; (ii) questionários abertos
aplicados aos participantes para coleta de percepções individuais; e (iii) observações
diretas feitas durante as sessões experimentais, registradas em notas de campo e
gravações de tela. A triangulação dessas fontes possibilitou uma visão abrangente
das experiências relatadas e observadas.

A análise qualitativa foi integrada à análise quantitativa, de modo que ambas se
complementassem. Enquanto a análise quantitativa mediu o tempo de execução e
o número de erros nas atividades com e sem IA, a análise qualitativa interpretou
como e por que essas diferenças ocorreram, destacando as percepções dos partici-
pantes sobre os benef́ıcios e limitações das ferramentas de IA. Essa integração possi-

Caṕıtulo 3. Metodologia 31

bilitou uma compreensão mais profunda do impacto educacional e da acessibilidade
proporcionada pelas soluções de IA em ambientes de programação.

Por fim, os resultados da análise qualitativa subsidiaram a discussão apresentada no
Caṕıtulo 5, na qual são detalhados os aspectos pedagógicos e tecnológicos identifi-
cados ao longo da pesquisa, fortalecendo a interpretação das evidências emṕıricas e
orientando recomendações para o desenvolvimento de práticas e ferramentas mais
acesśıveis.

3.4.2 Análise de Conteúdo

As principais categorias de análise emergiram de forma indutiva, contemplando os
seguintes eixos: barreiras de acessibilidade, impacto da IA na autonomia e produtivi-
dade, limitações na integração entre leitores de tela e IDEs, e sugestões de melhoria
das ferramentas assistivas. Essa categorização permitiu compreender não apenas os
resultados objetivos do experimento, mas também os aspectos subjetivos envolvidos
na interação dos participantes com as tecnologias utilizadas.

3.4.3 Etapas da Análise de Conteúdo

• Pré-análise: Nesta fase, foi realizada a leitura flutuante das entrevistas trans-
critas e das respostas aos questionários (corpus da análise). O objetivo foi
apreender o sentido geral das falas e identificar unidades de registro relevan-
tes.

• Codificação: Foram destacados trechos significativos dos relatos dos partici-
pantes, que expressavam opiniões, dificuldades, experiências e sugestões sobre
acessibilidade na programação.

• Categorizacão: A partir da codificação, emergiram categorias temáticas e sub-
categorias que representam os núcleos de sentido mais recorrentes nos dados.

• Inferência e Interpretação: Com base nas categorias, foram realizadas infe-
rências que relacionam os dados emṕıricos com os objetivos da pesquisa e com
a literatura sobre acessibilidade, educação e inteligência artificial.

3.4.4 Categorias Temáticas Emergentes

Os dados foram organizados em seis categorias principais, com suas respectivas sub-
categorias. A Tabela 3.3 apresenta esse agrupamento.

A partir destas categorias, a análise de conteúdo permitiu interpretar as experiências
e percepções dos participantes, revelando padrões de sentido sobre as barreiras de
acessibilidade, o impacto da IA na autonomia e produtividade, e as limitações na
integração entre leitores de tela e ambientes de desenvolvimento. Essa abordagem

Caṕıtulo 3. Metodologia 32

Tabela 3.3: Categorias temáticas e subcategorias identificadas
Categoria Definição Subcategorias (Exemplos)
Acessibilidade em
Ambientes de Pro-
gramação

Refere-se à facilidade de uso
de IDEs, leitores de tela e
infraestrutura por pessoas
cegas.

- Leitor de tela ineficiente
- IDEs pouco acesśıveis
(Eclipse, Colab)
- VS Code preferido pela
compatibilidade

Desafios Técnicos na
Programação

Dificuldades práticas en-
frentadas ao codificar, de-
purar e compreender sin-
taxe/lógica.

- Depuração de erros
- Interpretação de mensa-
gens
- Estruturação do código
- Pouco feedback do leitor

Recursos Educacio-
nais e Inclusão

Refere-se à adequação de
materiais didáticos, avalia-
ções e apoio institucional.

- Falta de material adap-
tado
- Professores despreparados
- Aulas em v́ıdeo inacesśı-
veis
- Falta de apoio dos núcleos
de inclusão

Uso e Limites da In-
teligência Artificial

Experiências e percepções
sobre IA como ferramenta
de apoio para programação
e acessibilidade.

- ChatGPT, Cursor, Replit
usados
- Problemas com contexto
em códigos longos
- IA sem integração com lei-
tores
- Desejo por IA espećıficas
para cegos

Estratégias Individu-
ais de Superação

Estratégias autônomas ado-
tadas para lidar com as bar-
reiras.

- Pedido de ajuda a colegas
- Busca em tutoriais
- Consulta a fóruns
- Tentativa e erro

qualitativa complementou os resultados quantitativos, possibilitando uma compre-
ensão mais ampla dos efeitos pedagógicos e tecnológicos das ferramentas de IA no
processo de aprendizagem de programação por estudantes cegos.

Caṕıtulo 4

Resultados

Este caṕıtulo apresenta os resultados obtidos a partir do experimento realizado com
estudantes cegos, cujo objetivo foi avaliar a acessibilidade e a usabilidade de fer-
ramentas de Inteligência Artificial (IA) e ambientes de desenvolvimento integrados
(IDEs) no ensino de programação. As análises contemplam dados quantitativos e
qualitativos, permitindo compreender de forma abrangente como o uso de IA influ-
encia a produtividade, a autonomia e a experiência desses estudantes no processo
de codificação.

Apresentamos, a seguir, o experimento conduzido em duas condições distintas: sem
o uso de IA e com o uso de IA. A comparação entre esses cenários possibilita iden-
tificar barreiras técnicas e de acessibilidade, assim como benef́ıcios e limitações na
integração entre leitores de tela e ferramentas de IA. Na sequência, discutimos os
achados obtidos por meio da análise de conteúdo das entrevistas e dos questionários,
estruturados em categorias temáticas que abrangem acessibilidade nos ambientes de
programação, desafios técnicos na Programação, recursos educacionais e inclusão,
uso e limitações da IA e estratégias individuais de superação. Por fim, os resultados
são articulados com a literatura, evidenciando as contribuições deste estudo para
o avanço de práticas e tecnologias mais inclusivas no ensino de programação para
pessoas cegas.

4.1 O Experimento

O experimento realizado neste estudo foi estruturado a partir da sequência didática
descrita no Apêndice B, composta por quatro etapas: a) contextualização, b) ativi-
dade sem uso de IA, c) atividade com uso de IA e d) discussão final. Inicialmente,
os participantes foram apresentados ao problema proposto e orientados quanto ao
uso das ferramentas permitidas em cada fase.

Na primeira atividade prática, os estudantes cegos deveriam resolver um algoritmo
de ordenação sem utilizar recursos de Inteligência Artificial, apenas com o suporte

33

Caṕıtulo 4. Resultados 34

de leitores de tela e os ambientes de desenvolvimento de sua escolha. Em seguida,
na segunda etapa, o mesmo problema foi reapresentado, permitindo-se agora o uso
de ferramentas baseadas em IA, como o ChatGPT, GitHub Copilot ou Google Colab,
para obter sugestões, correções ou mesmo gerar código.

Ao final, foi realizada uma entrevista semiestruturada para discutir percepções, difi-
culdades e comparações entre as duas abordagens. Essa sequência possibilitou ana-
lisar o impacto da IA na produtividade, usabilidade e acessibilidade do processo de
programação, permitindo uma avaliação qualitativa da experiência dos participantes
com e sem o apoio dessas tecnologias.

4.1.1 Contextualização

Durante a contextualização, os participantes foram recepcionados e introduzidos aos
objetivos do estudo. O ambiente foi preparado para que os participantes se sentissem
à vontade e tivessem clareza sobre as atividades. Nesse momento, as ferramentas
que seriam utilizadas (IDEs ou Editor de Texto) e os leitores de tela foram testados
pelos próprios participantes, com a orientação da pesquisadora, para garantir pleno
funcionamento, conforme as preferências individuais, nos computadores pessoais dos
participantes. Decisões importantes foram tomadas, como permitir o uso de ferra-
mentas com as quais os participantes já estavam familiarizados, evitando uma curva
de aprendizado desnecessária para novas tecnologias e o uso de consultas a sites para
relembrar o funcionamento do algoritmo.

4.1.2 Atividade sem uso de IA

O objetivo dessa etapa, conforme Seção 1.3, é compreender as principais barreiras de
acessibilidade enfrentadas por estudantes cegos em ambientes de programação. Cada
participante teve a liberdade de escolher a linguagem de programação que desejava
utilizar para a resolução do problema, permitindo que trabalhassem com tecnologias
com as quais já estavam familiarizados. A tarefa proposta envolvia a implementação
de um algoritmo de ordenação crescente para uma lista de números de forma
manual, sem o uso de funções prontas, o que revelou barreiras técnicas e cognitivas
espećıficas para cada linguagem escolhida. O leitor de tela adotado pela maioria
dos participantes foi o NVDA, escolhido por ser gratuito, leve e compat́ıvel com os
principais ambientes de desenvolvimento. A exceção foi o participante 2, que além do
NVDA utilizou o WebVox1 (um leitor web gratuito que permite aos cegos navegar na
Internet). As linguagens escolhidas refletiram o repertório e a familiaridade prévia
de cada participante: os Participantes 2, 3, 5, 6, 7, 8 e 10 optaram por Python;
o Participante 1 utilizou Java; o Participante 4 escolheu C++; e o Participante 9
utilizou PHP.

Iremos adotar que os Participantes serão chamados de Px, onde x varia de 1 a 10,
assim P1 se refere ao Participante 1 e assim, sucessivamente. A Tabela 4.1 apresenta

1https://chromewebstore.google.com/detail/webvox

Caṕıtulo 4. Resultados 35

um quadro comparativo dos dez participantes na etapa sem o uso de IA, sintetizando
dados como linguagem de programação utilizada, tipo de algoritmo implementado,
tempo despendido para escrever e corrigir o código, consulta a recursos externos e
IDEs empregadas. Cada participante pôde escolher a linguagem e o ambiente de
desenvolvimento com os quais já possúıa familiaridade, o que permitiu focar especi-
ficamente nas dificuldades relacionadas à acessibilidade, compreensão de mensagens
de erro, organização do código e interação com leitores de tela.

Figura 4.1: Tela de Implementação do P1

P1 tentou inicialmente construir o código do zero, mas enfrentou obstáculos tanto na
definição do vetor quanto na estruturação correta dos laços de repetição. Apesar de
buscar referências externas, sua implementação continha diversos eqúıvocos lógicos:

Caṕıtulo 4. Resultados 36

Figura 4.2: Tela de Implementação do P2

condições de parada incorretas nos laços for, incrementos inadequados, além da
impressão do vetor ser realizada dentro do loop, resultando em sáıdas parciais
e incorretas, como podemos observar na Figura 4.1. O tempo total gasto sem IA
foi de 128 minutos (61 para a implementação inicial e 67 para a tentativa de
correção), evidenciando não apenas a complexidade da tarefa para um estudante
cego, mas também as limitações do ambiente sem suporte inteligente. Embora o
código executasse sem erros de compilação, os problemas lógicos persistiam, e o
participante considerou a tarefa finalizada, mesmo sem ter atingido a sáıda correta.
Esses achados reforçam a importância de ambientes mais acesśıveis, que ofereçam
recursos de apoio à lógica e à estruturação do código.

Apesar de demonstrar familiaridade com o Colab e buscar soluções online, P2 enfren-
tou dificuldades significativas na compreensão e adaptação de códigos dispońıveis
em fóruns como o Stack Overflow . O leitor de tela não conseguiu interpretar
adequadamente a estrutura do código que ele copiou do fórum, o que dificultou a
depuração e a personalização para atender à proposta da tarefa. O código utilizado
inclúıa elementos desnecessários, como ordenações mistas (crescente e decrescente),
e não apresentava de forma clara a definição da lista nem a estrutura de repetição
esperada, como podemos ver na Figura 4.2. Após cerca de 60 minutos de tentativas,
o participante não conseguiu finalizar o programa e optou por encerrar a atividade.
Esse resultado evidencia como a acessibilidade limitada na leitura e compreensão de
código compromete a autonomia do estudante e reforça a importância de ferramentas
que ofereçam suporte contextual e adaptado às demandas da pessoa cega.

Durante a atividade, foram identificados diversos erros que comprometeram a exe-
cução do programa do P3, como um espaço indevido no nome da função (bubble

_ sort), o uso de uma variável (n) não declarada, e erros de indentação que pre-
judicaram a estrutura lógica do algoritmo, Figura 4.3. Esses problemas, ainda que
sutis visualmente, foram de dif́ıcil percepção com o uso do leitor de tela. A leitura
genérica das mensagens de erro no terminal, como syntax error near unexpected

Caṕıtulo 4. Resultados 37

token ‘(’, não fornecia pistas claras sobre a origem das falhas, tornando o processo
de depuração especialmente desafiador. O participante concluiu a implementação
inicial em 17 minutos, mas levou mais 70 minutos para tentar corrigir os erros, sem
recorrer a buscas externas, baseando-se exclusivamente em seu conhecimento prévio.
O caso de P3 reforça a importância de ambientes de desenvolvimento que ofereçam
feedbacks mais claros e acesśıveis para apoiar a autonomia de programadores com
deficiência visual.

Figura 4.3: Tela de Implementação do P3

P4, que utilizou a linguagem C++, enfrentou dificuldades para instalar as extensões
necessárias e para navegar na interface do VS Code, especialmente ao interagir com
caixas de diálogo e notificações, o que atrasou o ińıcio da codificação. Durante a
escrita do código, surgiram problemas relacionados à declaração e manipulação de
vetores, erros de sintaxe em estruturas de repetição e uso inadequado de bibliote-
cas - Figura 4.4. A implementação apresentou falhas como a ausência da biblioteca
<utility> para o uso da função swap, erros de pontuação como o uso incorreto de
std>:swap em vez de std::swap, omissão de chaves em blocos for, e v́ırgulas e
colchetes mal posicionados na declaração do vetor. Mesmo após consultar materi-
ais online, o participante levou 85 minutos para concluir a versão inicial, e outros
90 minutos para tentar corrigir os erros, demonstrando dificuldades em adaptar as
soluções encontradas à sua estrutura. A sáıda do programa também não inclúıa espa-
çamentos adequados, comprometendo a clareza dos resultados apresentados. Esses
achados evidenciam que, mesmo com conhecimento técnico, a falta de acessibilidade
e apoio contextualizado no ambiente de programação pode impactar fortemente a
autonomia e o desempenho de programadores cegos.

P5 enfrentou diversas dificuldades estruturais e lógicas, especialmente na manipu-
lação de listas e na implementação do laço de repetição para ordenação, utilizando
a linguagem de programação Phyton. Um problema significativo ocorreu durante a
exibição dos dados: mesmo que os números estivessem presentes no terminal, o leitor
de tela não os lia adequadamente ao pressionar a tecla <Enter>, o que dificultou a
verificação da sáıda e prolongou o processo de depuração. A lista foi inicializada

Caṕıtulo 4. Resultados 38

Figura 4.4: Tela de Implementação do P4

de forma incorreta, armazenando um valor único em vez de permitir a inserção
progressiva dos dados. Outros erros envolveram o uso desnecessário de variáveis
auxiliares, tentativa de acesso a ı́ndices inválidos e redundância no uso da função
sort() (Figura 4.5). O participante concluiu a implementação inicial em 97 minu-
tos e dedicou mais 56 minutos à busca por soluções online para resolver os erros
encontrados. Durante essa busca, localizou exemplos de código que se mostraram
relevantes e conseguiu adaptá-los para corrigir os problemas existentes. O caso de
P5 demonstra como falhas na comunicação entre o ambiente de desenvolvimento e
o leitor de tela comprometem a autonomia do programador e tornam o processo
significativamente mais demorado e complexo.

Apesar de recorrer a uma pesquisa na internet para obter o código do Bubble Sort,
P6 enfrentou uma série de dificuldades ao longo da tarefa, implementando também
em Phyton. As principais barreiras envolveram aspectos básicos da digitação e
estruturação do código, como ausência de dois-pontos (:), após comandos condi-
cionais, uso inadequado de v́ırgulas e problemas frequentes de indentação (Figura
4.6), que afetaram diretamente a execução do programa. Essas falhas, embora sim-

Caṕıtulo 4. Resultados 39

Figura 4.5: Tela de Implementação do P5

ples para usuários videntes, tornaram-se cŕıticas em razão das limitações do leitor
de tela, que não sinalizava com precisão a localização dos erros, muitas vezes in-
dicados visualmente por sublinhados ou serrilhados no VS Code. P6 também teve
dificuldades para compreender as mensagens de erro exibidas no terminal e inter-
pretar corretamente os retornos do NVDA, como quando o leitor indicava apenas
números genéricos relacionados à posição do cursor ou à linha. Do ponto de vista
conceitual, P6 demonstrou fragilidade na compreensão da lógica de programação,
especialmente no que diz respeito à estrutura dos laços for utilizados no algoritmo
Bubble Sort. As dúvidas surgiram em relação aos limites do laço, à lógica de
ordenação e ao funcionamento interno do algoritmo. Ao longo da atividade, foi ne-
cessário intervir com explicações adicionais para que ele conseguisse compreender os
fundamentos da ordenação e corrigir seu código. P6 levou 44 minutos para realizar a
implementação inicial e mais 16 minutos para ajustes e depuração, totalizando uma
hora de atividade. Sua experiência evidencia como a junção de barreiras técnicas,
acessibilidade limitada e lacunas conceituais pode comprometer significativamente
a autonomia e a produtividade de estudantes cegos em ambientes de programação
tradicionais.

Inicialmente, o P7 tentou construir um código manualmente, mas enfrentou dificul-
dades com a manipulação de listas e com a estruturação da função de ordenação,
o que o levou a buscar uma solução na internet. Ao encontrar e copiar um código
baseado no algoritmo Insertion Sort, Figura 4.7, P7 tentou adaptá-lo à lista que
havia criado, substituindo variáveis e ajustando o conteúdo. No entanto, erros de
indentação surgiram durante a edição, dificultando a execução correta do código.
Como o VS Code sinalizava erros apenas por meio de um som (“bip”) e sem indicar
a natureza espećıfica do problema, o participante teve que navegar linha por linha
para identificar a falha. Após a correção da indentação, o código foi executado, mas
sem gerar sáıda viśıvel, já que não havia nenhum comando de impressão inclúıdo.
Essa ausência gerou confusão, prolongando ainda mais a depuração. Ao identificar
o problema e inserir a chamada da função, o participante acabou posicionando-a
incorretamente dentro da própria definição, resultando em uma chamada recursiva

Caṕıtulo 4. Resultados 40

Figura 4.6: Tela de Implementação do P6

e em um loop infinito. Somente após diversos ajustes, o código foi executado cor-
retamente. No total, P7 levou cerca de 127 minutos para concluir a atividade, de-
monstrando como aspectos sutis, como indentação automática e retorno genérico de
erros, impactam significativamente o processo de programação para pessoas cegas.

Figura 4.7: Tela de Implementação do P7

Embora tenha demonstrado domı́nio na construção do algoritmo, P8 enfrentou um
contratempo técnico: um conflito entre extensões do VS Code, configuradas para
Java, que dificultou momentaneamente a execução do código em Python. Ainda as-
sim, encontrou alternativas para testar o funcionamento do programa. P8 também
relatou questões relacionadas à acessibilidade do ambiente, como a exibição de in-
formações irrelevantes no terminal após a execução do código, o que compromete

Caṕıtulo 4. Resultados 41

a leitura para usuários de leitores de tela. Para lidar com aspectos de usabilidade,
P8 mencionou utilizar configurações espećıficas no NVDA que produzem sinais so-
noros conforme a profundidade da indentação e notificações sonoras para a presença
de erros, facilitando a navegação e a correção do código. Apesar desses desafios pon-
tuais, P8 conseguiu realizar a atividade com autonomia e eficiência (Figura 4.8). O
tempo total para concluir essa primeira etapa foi de aproximadamente 20 minutos,
sendo 17 minutos para a construção do código com o aux́ılio da internet e 3 minutos
para ajustes.

Figura 4.8: Tela de Implementação do P8

P9 enfrentou diversos problemas de acessibilidade que dificultaram sua autonomia
e fluidez na realização da tarefa. Um dos principais obstáculos foi a dificuldade em
identificar erros no código, já que o leitor de tela NVDA não sinalizava de forma
clara a localização das falhas apontadas pela IDE, comprometendo o processo de
depuração. Além disso, o ambiente do Visual Studio Code apresentava excesso
de informações visuais que, ao serem lidas automaticamente pelo leitor, causa-
vam sobrecarga auditiva e dificultavam a concentração. P9 também não utilizava
recursos sonoros espećıficos para indicar ńıveis de indentação, o que pode ter preju-
dicado a percepção da estrutura do código. Somado a isso, enfrentou dificuldades
na navegação pelo editor, especialmente para manter o foco alinhado com o cursor
de escrita (a posição do cursor nem sempre era clara, e o foco do leitor de tela nem
sempre acompanhava o ponto de edição corretamente, o que gerava insegurança na
manipulação do código). Esses fatores evidenciam barreiras importantes que ainda
persistem nos ambientes de programação e que impactam diretamente a experiência
de usuários cegos. P9 iniciou a resolução da tarefa utilizando a linguagem PHP,
tentando implementar um algoritmo de ordenação com base em um exemplo pre-
viamente encontrado, semelhante ao Bubble Sort. Ele levou aproximadamente 21
minutos para copiar, adaptar e testar esse código, porém, devido a um erro na ló-
gica de atualização dos elementos, causado pelo uso incorreto de um array auxiliar,

Caṕıtulo 4. Resultados 42

o algoritmo não produziu o resultado esperado. Diante da falha e da dificuldade em
identificar o problema, o participante optou por apagar completamente o código e
recomeçar a tarefa. Em sua segunda tentativa, decidiu utilizar o algoritmo Selec-

tion Sort, que também encontrou na internet, adaptando-o ao seu contexto. Essa
nova abordagem exigiu maior esforço de compreensão e ajustes, levando cerca de 43
minutos até que o código estivesse funcional. Assim, o tempo total investido por ele
para concluir a primeira etapa foi de aproximadamente 64 minutos.

Figura 4.9: Tela de Implementação do P9

Durante o experimento, P10 enfrentou diversas dificuldades, como as limitações
técnicas do computador utilizado — um modelo antigo e de baixo desempenho,
que provocava lentidão, travamentos e atrasos no compartilhamento de tela — e
problemas recorrentes com o leitor de tela, que parava de responder após abrir
pastas ou projetos, exigindo reinicialização. Também relatou a falta de referências e
suporte para discutir programação acesśıvel, o que gera isolamento e insegurança na
resolução de problemas. Teve dificuldade em lembrar a lógica completa de algoritmos
de ordenação sem uso de funções prontas, com erros de formatação e indentação que
afetaram o resultado do programa, além de dúvidas iniciais sobre como estruturar a
entrada de dados. O P10 precisou de 82 minutos para desenvolver o algoritmo, com
aux́ılio de pesquisas na internet e de mais 10 minutos para correção de erros.

Caṕıtulo 4. Resultados 43

Figura 4.10: Tela de Implementação do P10

Śıntese:
A análise qualitativa dos relatos e do desempenho dos participantes eviden-
ciou limitações tanto técnicas quanto cognitivas, agravadas por interfaces
pouco acesśıveis e ausência de recursos de apoio automatizado.
Os relatos apresentados nesta seção evidenciam, de forma concreta, os obs-
táculos enfrentados por estudantes cegos ao programarem sem o apoio de
ferramentas baseadas em Inteligência Artificial. As dificuldades recorrentes
como: problemas de indentação, interpretação de mensagens de erro, ausên-
cia de sugestões contextuais e limitações na navegação pelo código, revelam
um cenário de acessibilidade ainda distante do ideal. Mesmo com domı́nio
básico das linguagens e o uso de leitores de tela como NVDA, os parti-
cipantes demonstraram que a falta de integração entre recursos assistivos
e ambientes de desenvolvimento compromete diretamente a autonomia, a
usabilidade e a produtividade. Esses achados reforçam a importância de se
repensar a acessibilidade digital no ensino de programação, especialmente
quando se busca garantir uma experiência de aprendizagem equitativa e
inclusiva.

A partir da Tabela 4.1, podemos concluir que, na etapa sem uso de IA, houve
grande variação no desempenho dos participantes, tanto no tempo de im-
plementação quanto de correção, evidenciando diferentes ńıveis de domı́nio
em programação e familiaridade com os algoritmos escolhidos. A maioria
recorreu a pesquisas na web, o que sugere necessidade de apoio externo para
solucionar dúvidas, e predominou o uso do VS Code como IDE, ainda que
alguns tenham optado por ferramentas como Colab, Repl.it ou até mesmo o
Bloco de Notas. Observa-se também a preferência por algoritmos simples e
amplamente conhecidos, como Bubble Sort, indicando posśıvel limitação de
repertório ou escolha por métodos de implementação mais acesśıveis para a
tarefa.

Caṕıtulo 4. Resultados 44

Tabela 4.1: Quadro comparativo dos participantes na etapa sem uso de IA
Px Linguagem

de Pro-
gramação

Algoritmo Tempo (fazer
/ corrigir)

Pesquisou
na Web?

IDE

P1 Java Consulta sobre
ordenação

61 min / 67
min

Sim VS Code

P2 Python Funções pron-
tas

60 min / desis-
tiu

Sim Colab

P3 Python Bubble Sort 17 min / 70
min

Não Bloco de No-
tas / VS Code

P4 C++ Bubble Sort 85 min / 90
min

Sim Repl.it / VS
Code

P5 Python Consulta sobre
ordenação

97 min / 56
min

Sim Bloco de No-
tas / VS Code

P6 Python Bubble Sort 44 min / 16
min

Sim VS Code

P7 Python Insertion Sort 65 min / 62
min

Sim VS Code

P8 Python Ordenação com
Flag

17 min / 3 min Sim VS Code

P9 PHP Selection Sort 21 min / 43
min

Sim VS Code

P10 Python Bubble Sort 82 min / 10
min

Sim VS Code

4.1.3 Atividade com uso de IA

Os objetivos dessa etapa, conforme Seção 1.3, são: investigar a integração entre
leitores de tela e ferramentas de IA, avaliando seus impactos na compreensão do
código e analisar as percepções dos participantes sobre o uso dessas ferramentas,
considerando aspectos como confiabilidade, acessibilidade, clareza das sugestões e
dependência de ajuda externa.

Cada participante teve a liberdade de escolher a ferramenta de IA, permitindo que
trabalhassem com tecnologias com as quais já estavam familiarizados. A tarefa
proposta envolvia a implementação de um algoritmo de ordenação crescente para
uma lista de números de forma manual, sem o uso de funções prontas, ou seja, o
mesmo problema, mas com o aux́ılio de ferramentas de IA. A orientação foi que era
posśıvel ajustar o código da primeira etapa ou construir um código novo para ser
comparado com o que havia sido feito (na etapa anterior - sem o uso de IA).

A Tabela 4.2 sintetiza as principais informações da etapa com o uso de IA pelos
participantes do estudo. A maioria utilizou o ChatGPT como ferramenta de apoio à
programação, exceto P5, que recorreu ao Google Colab, e P4, que contou com a IA do

Caṕıtulo 4. Resultados 45

Repl.it. O domı́nio prévio da ferramenta era comum entre os participantes, ou seja,
todos, com exceção de P4, já haviam utilizado alguma forma de IA anteriormente.
No que diz respeito ao tipo de interação com o código, nove participantes revisaram
códigos gerados pela IA, enquanto apenas P2 optou por criar um novo código com o
suporte do ChatGPT. Os tempos de análise ou correção foram relativamente curtos,
variando entre cinco e treze minutos na maioria dos casos, com exceção de P4 e P5,
que demandaram 30 e 37 minutos, respectivamente, para acessar e compreender o
código gerado. Em termos de acessibilidade, apenas dois participantes (P4 e P5)
não conseguiram acessar o código gerado de forma autônoma, enquanto os demais
conclúıram a tarefa sem necessidade de ajuda externa, o que evidencia o potencial
da IA para promover maior autonomia entre estudantes cegos quando integrada a
ferramentas adequadas e previamente conhecidas.

Tabela 4.2: Resumo da etapa com uso de IA pelos participantes

Px
Linguagem
de Prog.

IA utili-
zada

Já
usava
IA?

Código Tempo (ge-
rar/analisar)

Acessou
código
gerado
sem
ajuda?

P1 Java ChatGPT Sim Revisou Seg /13 min Sim
P2 Python ChatGPT Sim Criou Seg / 6 min Sim
P3 Python ChatGPT,

VS Code
Sim Revisou Seg / 5 min Sim

P4 C++ IA do
Repl.it

Não Revisou Seg /30 min Não

P5 Python Google
Colab

Sim Revisou Seg /37 min Não

P6 Python ChatGPT Sim Revisou Seg /12 min Sim
P7 Python ChatGPT Sim Revisou Seg /12 min Sim
P8 Python VS Code/

ChatGPT
Sim Revisou Seg / 5 min Sim

P9 PHP ChatGPT Sim Revisou Seg / 7 min Sim
P10 Python ChatGPT Sim Revisou Seg / 5 min Sim

Durante a resolução dessa etapa, P1 demonstrou autonomia e familiaridade com o
uso da IA (ChatGPT), utilizando-a como apoio para revisar, comparar e aprimorar
seu próprio código. Ele destacou que prefere usar a IA em situações em que se
sente travado, mas que, no geral, gosta de tentar resolver os problemas por conta
própria antes de recorrer ao recurso. Em relação à acessibilidade, P1 relatou uma
experiência positiva. A interação com a IA foi considerada acesśıvel, especialmente
porque os conteúdos gerados eram baseados em texto, facilmente interpretados
pelos leitores de tela. Ele mencionou o uso do NVDA e compartilhou estratégias
que emprega quando as sugestões automáticas de código não são lidas corretamente:
como alternar do modo de edição (no qual apenas o texto digitado é lido) para o

Caṕıtulo 4. Resultados 46

modo de navegação do leitor de tela, que permite percorrer elementos da interface e
identificar as sugestões apresentadas pelo sistema. Também comentou sobre ajustes
de configuração que otimizam a leitura dessas sugestões em algumas extensões. P1
ressaltou que, embora alguns recursos de autocompletar (como os “ghost texts”

no VS Code) possam apresentar obstáculos, essas barreiras não são da ferramenta
de IA em si, mas sim de configurações ou da forma como as extensões estão imple-
mentadas. Ele reforçou que, com os devidos ajustes no leitor de tela, consegue usar
a IA com tranquilidade e eficácia. Essa etapa demandou segundos para exibição do
código aprimorado; P1 precisou de 13 minutos para analisar o código gerado e com-
parar com o que havia feito. Para este participante, a segunda etapa do experimento
evidenciou não apenas a redução do tempo necessário para concluir a tarefa com
o apoio da IA (em relação à etapa sem IA, que durou cerca de 70 minutos), mas
também a viabilidade do uso dessas ferramentas por programadores cegos, desde
que observadas as questões de compatibilidade e configuração dos leitores de tela.

P2 buscou interagir com a ferramenta de IA mesmo com certas limitações de fami-
liaridade técnica no momento, uma vez que não programava há algum tempo. Em
termos de acessibilidade, P2 conseguiu navegar pelo navegador (Edge) e utilizar o
ambiente necessário para acessar o ChatGPT. Portanto, também com o tempo de
execução reduzido e a resolução assistida, o caso de P2 mostra como ferramentas
de IA podem oferecer suporte acesśıvel mesmo a pessoas que estão retornando
ou readaptando-se à prática da programação, desde que estejam inseridas em um
ambiente digital acesśıvel e estruturado para o uso com leitores de tela. O P2 não
implementou o código manualmente na primeira etapa. Portanto, nesta etapa
com IA, ele se concentrou na interação com a ferramenta para compreender o
funcionamento do algoritmo proposto e explorar sua aplicabilidade com apoio da
IA. Foram necessários segundos para a exibição do código e 6 minutos para leitura
e interpretação do código gerado pela IA.

P3, usando o ChatGPT e a IA integrada ao Visual Studio Code, conseguiu detec-
tar e corrigir os erros no código de maneira significativamente mais rápida. A
ferramenta ofereceu sugestões automáticas para corrigir problemas de indentação
e remover espaços indevidos no nome da função, além de destacar com precisão a
linha onde a variável n deveria ser definida. Isso tornou o processo de depuração
mais eficiente e direto. Um benef́ıcio adicional foi a clareza das mensagens de erro
apresentadas pela IA, que, ao contrário do terminal tradicional, onde o participante
enfrentava dificuldades para interpretar os erros, forneceu explicações mais detalha-
das e acesśıveis. A IA não apenas apontou os problemas de sintaxe e estrutura,
mas também sugeriu posśıveis soluções, diminuindo consideravelmente a necessi-
dade de tentativa e erro. Como resultado, o tempo total de depuração foi reduzido
drasticamente, passando de 70 minutos, na etapa sem IA, para apenas alguns segun-
dos com o uso da tecnologia, evidenciando o potencial das ferramentas baseadas em
IA para apoiar programadores cegos na identificação e correção de erros de forma
mais acesśıvel e intuitiva.

Com o uso da IA integrada ao ambiente Repl.it, o P4 conseguiu otimizar significa-

Caṕıtulo 4. Resultados 47

tivamente sua produtividade na resolução da tarefa de programação. A ferramenta
sugeriu automaticamente a inclusão da biblioteca necessária, corrigiu erros de sin-
taxe e contribuiu para a organização da estrutura do código. No entanto, apesar
desses avanços, a ausência de recursos de acessibilidade adequados no ambiente de
desenvolvimento comprometeu a fluidez do processo. O P4 enfrentou dificuldades
para localizar botões, menus e pop-ups, sendo necessário o uso de instruções detalha-
das para navegar utilizando atalhos de teclado e leitores de tela. Além disso, parte
do código gerado pela IA não foi lida pelo leitor de tela, impedindo a compreensão
completa da sáıda apresentada. O código foi gerado em segundos, mas, para acesso
e análise, foram necessários 30 minutos. Esses desafios evidenciam que, embora as
ferramentas de IA representem um avanço significativo para o desenvolvimento
de software, sua eficácia junto a programadores cegos ainda depende de melhorias
na acessibilidade e usabilidade dos ambientes de programação, a fim de assegurar
uma experiência mais fluida, autônoma e verdadeiramente inclusiva.

P5 utilizou o Google Colab, ambiente que oferece funcionalidades integradas de
sugestão e geração automática de código, além da possibilidade de integração com
o ChatGPT. Durante a execução, P5 inicialmente colou o código desenvolvido na
etapa anterior e solicitou à IA que realizasse uma análise e sugerisse melhorias.
O algoritmo gerado pela IA foi considerado mais eficiente e conciso do que a
versão manual. P5 reconheceu que a IA otimizou o tempo de desenvolvimento
e aprimorou a estrutura do código, indicando que, com o uso da ferramenta, a
atividade foi resolvida de forma mais rápida e com melhor qualidade. No entanto,
foram identificados problemas sérios de acessibilidade no ambiente. Apesar de o
leitor de tela NVDA conseguir ler os botões de execução e o nome das células no
Colab, ele não conseguiu interpretar o conteúdo de código gerado automaticamente
pela IA, o que foi descrito pelo participante como um trecho de código “inviśıvel”,
similar a uma imagem. Isso impossibilitou que P5 acessasse as sugestões da IA
por conta própria, comprometendo a autonomia na leitura e análise das respostas
geradas. O tempo total da atividade com IA, para acesso e análise do código gerado,
foi de aproximadamente 37 minutos. Embora mais produtiva em termos de lógica
computacional, a etapa com IA revelou que a ausência de compatibilidade entre
o leitor de tela e a interface do Google Colab representa um entrave relevante
para a plena inclusão de pessoas cegas. Em śıntese, a IA demonstrou ser uma
aliada na construção e otimização de soluções em programação; porém, a eficácia
de sua aplicação está diretamente condicionada à acessibilidade do ambiente onde é
empregada. O caso de P5 evidencia que o avanço em inteligência artificial deve ser
acompanhado de poĺıticas de design inclusivo, para garantir que os benef́ıcios da
tecnologia sejam efetivamente acesśıveis a todos.

P6 utilizou o ChatGPT, ferramenta com a qual já demonstrava familiaridade e
que faz parte de sua rotina profissional. A IA sugeriu um algoritmo com uma
estrutura eficiente, utilizando a função sort() da linguagem Python, e o participante
P6 rapidamente reconheceu sua funcionalidade e validou a proposta. Durante a
atividade, o participante P6 destacou que costuma utilizar a IA como ferramenta

Caṕıtulo 4. Resultados 48

de reforço em situações de bloqueio ou quando deseja confirmar o que já pensou.
Ele também mencionou que costuma adaptar o código sugerido conforme a sua
necessidade, o que demonstra senso cŕıtico e domı́nio da prática com o apoio da
IA. No tocante à acessibilidade, P6 relatou que não encontra grandes barreiras no
uso do ChatGPT, especialmente por se tratar de uma interface textual compat́ıvel
com leitores de tela. Ele mencionou que consegue utilizar a ferramenta tanto no
navegador quanto via aplicativo móvel, adaptando-se bem aos dois formatos. No
entanto, observou que algumas interfaces, como editores de código com sugestões
automáticas (“ghost texts”), ainda apresentam obstáculos, pois os leitores de tela
nem sempre interpretam adequadamente esses elementos visuais. Em śıntese, a
etapa com IA foi conclúıda em tempo reduzido, cerca de 12 minutos para a análise
do código gerado, demonstrando a eficácia da tecnologia no apoio à programação.
Além disso, a experiência de P6 evidencia que, quando acesśıveis, as ferramentas
baseadas em IA são capazes de ampliar significativamente a produtividade e a
autonomia de programadores cegos.

P7 utilizou o ChatGPT como principal ferramenta de apoio para programar em
Python. A principal contribuição da IA foi a possibilidade de fornecer sugestões de
código e identificar prováveis causas de erros, o que resultou em maior fluidez no
processo de desenvolvimento. P7 relatou que, ao encontrar dificuldades para enten-
der os erros apresentados pelo terminal, copiou o código e o submeteu ao ChatGPT,
que lhe devolveu uma nova versão funcional. P7 afirmou que esse apoio o ajudou a
compreender que o erro estava relacionado à indentação, algo que antes ele não
conseguiria identificar de forma autônoma. Apesar dos avanços, persistiram limi-
tações importantes. O terminal do VS Code continuou a representar uma barreira
significativa de acessibilidade e, mesmo com a intervenção da IA, o participante P7
precisou recorrer a estratégias alternativas, como salvar o código, utilizar o Prompt
do Windows e navegar manualmente na interface. Além disso, ele destacou que a
IA, embora útil, exige que o usuário saiba “como perguntar” (engenharia de prompt)
para obter respostas relevantes, o que impõe um desafio cognitivo adicional. Outro
ponto cŕıtico mencionado foi a redução da autonomia lógica. P7 reconheceu que,
se dependesse apenas da IA, tenderia a aceitar soluções prontas, sem refletir pro-
fundamente sobre a estrutura do algoritmo.Embora a IA tenha proporcionado ga-
nhos de produtividade, também suscitou preocupações quanto à superficialidade na
aprendizagem e à dependência excessiva do recurso. Essas observações reforçam que,
embora a IA represente um avanço em termos de acessibilidade para programa-
dores cegos, sua adoção requer equiĺıbrio e criticidade, devendo ser acompanhada
por práticas que incentivem a autonomia e o racioćınio lógico dos usuários.

P8 utilizou recursos de autocompletar habilitados no VS Code, especialmente com
atalhos como Tab e Ctrl + → (seta para baixo), indicando familiaridade com assis-
tentes de código integrados ao ambiente de desenvolvimento. P8 reconheceu que
esses recursos auxiliavam na digitação de comandos e estruturas, contribuindo
para uma maior agilidade na escrita do código. Durante a execução da tarefa com
suporte de IA (ChatGPT), P8 demonstrou interesse em soluções integradas que eli-

Caṕıtulo 4. Resultados 49

minassem informações visuais irrelevantes, como o caminho do arquivo e o tempo
de execução, os quais eram lidos pelo leitor de tela e comprometiam sua experi-
ência. P8 sugeriu que a integração ideal com o VS Code deveria exibir apenas a
sáıda relevante, facilitando a leitura para usuários cegos. Também comentou sobre a
configuração do NVDA para emitir sons que indicam a indentação, o que considera
essencial para entender a estrutura do código. Esses dados revelam que, embora P8
já utilizasse sugestões automáticas de código antes da atividade, o uso intencional
da IA como estratégia de apoio à programação potencializou sua percepção sobre
eficiência, acessibilidade e usabilidade. Além disso, a etapa permitiu que P8 iden-
tificasse as melhorias necessárias no ambiente de desenvolvimento para torná-lo
mais acesśıvel e funcional. O código gerado pela IA foi muito semelhante ao que P8
criou, logo, foram necessários menos de 5 minutos para a análise do código.

P9, para aprimorar um código em PHP, utilizou o ChatGPT para revisar e melho-
rar seu código. A IA sugeriu mudanças que inclúıram: correção de erros sintáticos,
como a troca de letras maiúsculas/minúsculas em nomes de variáveis; substitu-
ição de trechos de código por alternativas mais eficientes, como a troca direta
de elementos em listas sem criar variáveis temporárias e sugestão de uso de fun-
ção pronta de ordenação (porém não adotada no experimento para evitar atalhos).
Além disso, P9 mencionou que também utiliza eventualmente o Gemini2, IA da
Google, mas com menos frequência, pois identificava mais ”alucinações” (respostas
imprecisas ou inventadas) do que no ChatGPT. A interação com a IA foi descrita
como positiva, especialmente por sua capacidade de sugerir melhorias e apontar
erros de forma acesśıvel. Ainda assim, P9 reforçou que prefere utilizar a IA apenas
como último recurso, para evitar dependência e desenvolver sua própria lógica de
programação. A leitura dos códigos gerados foi feita sem problemas com o leitor de
tela NVDA, e os principais desafios relatados envolveram a lógica do problema, e
não a interação com a IA em si. O tempo gasto, sobretudo para a análise do código
gerado, foi decerca de 7 minutos.

P10 utilizou o ChatGPT para revisar e aprimorar o código escrito anteriormente em
Python. Após copiar e colar seu código na interface da IA, o participante recebeu
como resposta uma versão otimizada do algoritmo de ordenação, com melhorias que
inclúıam a verificação das trocas dos valores, estratégia t́ıpica do Bubble Sort

eficiente. Inicialmente, a IA sugeriu o uso da função sort(), no entanto, a pedido
da pesquisadora, foi gerado um novo código sem o uso de funções prontas. P10
destacou que a explicação da IA foi clara e que conseguiu compreender a lógica por
trás da proposta, especialmente os ganhos de desempenho ao evitar comparações
desnecessárias em listas já ordenadas. A tarefa foi conclúıda com maior fluidez e
autonomia, demonstrando o potencial da IA como recurso de apoio acesśıvel no
ensino de programação para estudantes cegos. Essa etapa durou apenas 5 minutos.

2https://gemini.google.com/

Caṕıtulo 4. Resultados 50

Śıntese
Na atividade com uso de IA, os participantes resolveram o mesmo problema
de ordenação crescente da etapa anterior, agora com apoio de ferramentas
de IA escolhidas livremente (majoritariamente ChatGPT, além da IA do
Repl.it e do Google Colab). O objetivo foi investigar a integração entre
leitores de tela e essas ferramentas, considerando compreensão de código,
confiabilidade, clareza das sugestões, acessibilidade e necessidade de ajuda
externa. Em geral, os participantes já tinham experiência prévia com IA e,
na etapa com suporte, ou revisaram o código manual da primeira fase ou ge-
raram um código novo para comparar. Os tempos para análise/correção do
código gerado pela IA foram, em sua maioria, baixos (entre 5 e 13 minutos),
com exceção de P4 e P5, que precisaram de 30 e 37 minutos devido a dificul-
dades de acessibilidade nas interfaces Repl.it e Google Colab. Em termos
de acesso autônomo ao código, apenas esses dois participantes não conse-
guiram ler as respostas sem ajuda externa, enquanto os demais relataram
boa integração entre IA e leitor de tela.
Os relatos individuais mostram um padrão consistente de ganho de produti-
vidade e acessibilidade, mas com nuances importantes. Participantes como
P1, P3, P6, P9 e P10 usaram a IA sobretudo para revisar, explicar erros
e sugerir melhorias, reduzindo drasticamente o tempo de depuração (por
exemplo, de cerca de 70 minutos para poucos minutos ou segundos) e valo-
rizando a clareza textual das explicações. P2, que estava há algum tempo
sem programar, ilustra como a IA pode apoiar quem está se readaptando,
desde que o ambiente digital (navegador, leitor de tela) seja acesśıvel. Já P4
e P5 evidenciam que, mesmo com códigos melhores e mais eficientes gerados
em segundos, a falta de compatibilidade plena entre IA e interface (código
“inviśıvel” para o leitor de tela, elementos gráficos não lidos) compromete
a autonomia. Por fim, o conjunto dos resultados indica que a IA funciona
tanto como mediadora explicativa (quando ajuda a compreender e corrigir o
próprio código) quanto como posśıvel substituta da prática de programação
(quando gera o código completo), o que exige cautela para que o ganho de
tempo não venha à custa da aprendizagem e da autonomia dos estudantes
cegos.

Comparações sobre as Etapas Sem e Com IA

A Figura 4.11 apresenta um gráfico de barras empilhadas que compara o tempo
gasto pelos participantes nas duas etapas do experimento: sem o uso de IA e com o
uso de IA. Para cada participante, foram considerados dois componentes de tempo
em cada etapa: o tempo para elaborar o código e o tempo para corrigir os erros
encontrados.

Na etapa sem IA (representada pelas barras em tons de azul), observa-se que o tempo
total de execução variou amplamente entre os participantes, com destaque para o
participante P4, que levou 85 minutos para escrever e 90 minutos para corrigir o

Caṕıtulo 4. Resultados 51

Figura 4.11: Comparação de tempo de execução com e sem IA

código, totalizando 175 minutos, e P5, com 153 minutos. Já o participante P2
abandonou a etapa de correção após os 60 minutos iniciais de desenvolvimento. Em
média, a etapa sem IA foi marcada por longos peŕıodos de depuração e dificuldades
técnicas, como erros de lógica, sintaxe e uso de estruturas de repetição, conforme
descrito anteriormente.

Na etapa com IA (barras em tons de laranja), o tempo de desenvolvimento inicial
foi significativamente reduzido, com todos os participantes levando apenas cerca
de 2 segundos (aproximadamente 0,03 minutos) para exibir o código (gerado ou
revisado) - tempo de implementação, sugerido automaticamente pelas ferramentas
de IA, como o ChatGPT. O tempo de análise da resposta da IA, que chamamos de
tempo para corrigir, foi consideravelmente menor para a maioria dos participantes,
com destaque para os ganhos de produtividade obtidos pelos participantes P1, P3,
P6 e P10. Contudo, os participantes P4 e P5 destoaram desse padrão, apresentando
30 e 37 minutos, respectivamente, apenas na fase de análise do código. Essa diferença
se deve a problemas de acessibilidade: ambos enfrentaram dificuldades para acessar
as respostas fornecidas pela IA por meio dos leitores de tela e precisaram de ajuda
externa para interagir com os conteúdos sugeridos, o que ampliou significativamente
o tempo total de execução.

Esse gráfico evidencia de forma clara o impacto positivo das ferramentas de IA na
redução do tempo total de execução, principalmente na etapa de correção, mantendo
a tarefa acesśıvel e mais eficiente para programadores cegos.

Observou-se uma redução expressiva no tempo de depuração com o uso da IA, so-
bretudo porque as ferramentas foram capazes de traduzir e explicar mensagens de
erro que, sem o apoio tecnológico, não eram compreendidas pelos participantes. No
entanto, esse ganho temporal não implica, necessariamente, em um ganho de apren-
dizagem ou de autonomia. Embora a IA tenha auxiliado na interpretação dos erros,
em alguns casos ela chegou a gerar o código completo, o que desloca o papel do par-

Caṕıtulo 4. Resultados 52

ticipante de construtor para verificador do código. Assim, o processo tornou-se mais
eficiente, mas menos ativo do ponto de vista cognitivo. Para parte dos participan-
tes, a IA funcionou como mediadora explicativa, promovendo maior compreensão e
acessibilidade, enquanto, para outros, representou um agente substitutivo da prá-
tica de programação. Portanto, o ganho de tempo deve ser interpretado como um
avanço em acessibilidade e eficiência, mas não necessariamente como um indicador
de aprendizagem significativa ou de desenvolvimento de autonomia.

4.1.4 Análise de Conteúdo

A partir da análise de conteúdo, realizada segundo os procedimentos de Bardin
(2011), emergiram categorias que refletem as percepções e experiências dos partici-
pantes em relação ao uso da Inteligência Artificial em ambientes de desenvolvimento
integrados. Essas categorias sintetizam as principais barreiras, potencialidades e
implicações educacionais identificadas durante o experimento e nas entrevistas rea-
lizadas após as atividades práticas.

De modo geral, os resultados qualitativos revelaram que a IA contribuiu para a am-
pliação da autonomia dos participantes e para a redução do tempo de depuração,
favorecendo uma aprendizagem mais fluida e produtiva. No entanto, persistem de-
safios relacionados à acessibilidade plena das ferramentas utilizadas, principalmente
devido à limitação de integração entre leitores de tela e os recursos interativos das
IDEs, o que impactou a navegação e a interpretação das sugestões de código.

A interpretação das categorias indica que a adoção de ferramentas de IA pode re-
presentar um avanço significativo na inclusão digital de estudantes cegos, desde que
acompanhada de ajustes de acessibilidade e estratégias educacionais que favoreçam o
uso efetivo dessas tecnologias. Os resultados obtidos fundamentam a discussão apre-
sentada no Caṕıtulo 5, na qual são articulados os aspectos pedagógicos, tecnológicos
e éticos decorrentes do uso da IA no ensino de programação.

Análise por Categoria e Unidades de Registro (UR)

Categoria 1: Acessibilidade em Ambientes de Programação

As dificuldades relacionadas à acessibilidade de IDEs e editores de código foram
mencionadas por todos os 10 participantes. Os relatos destacam incompatibilida-
des com leitores de tela, falta de retorno sonoro adequado, menus não acesśıveis e
limitações na navegação por teclado. O VS Code foi frequentemente citado como a
ferramenta mais compat́ıvel, enquanto outras, como Eclipse e Colab, foram apon-
tadas como problemáticas. As falas a seguir retratam a percepção dos estudantes
cegos em relação à esta categoria.

• “Uso o VS Code porque consigo navegar com atalhos e ele respeita as estru-
turas do código. Outros ambientes não me deixam nem saber onde estou.”
(Participante 1)

Caṕıtulo 4. Resultados 53

• “Muitas vezes, é imposśıvel ajustar o zoom ou o contraste da interface. Além
disso, a navegação por teclado falha em algumas janelas.” (Participante 2)

• “O Colab é péssimo com leitores. Tive que mudar de ambiente porque ele
travava tudo.” (Participante 3)

• “O VS Code, acho completo e acesśıvel. Ele funciona muito bem com o
NVDA.” (Participante 4)

• “Tentei usar IDEs com Inteligência Artificial integrada, mas as caixas de
diálogo não eram lidas pelo NVDA.” (Participante 5)

• “No ambiente acadêmico, o laboratório usa ferramentas que não têm acessibi-
lidade. Precisei levar meu notebook com o VS Code instalado.” (Participante
6)

• “Têm muitos menus com pop-ups escondidos, e o leitor não consegue identi-
ficar o que está sendo exibido. Isso atrapalha demais.” (Participante 7)

• “O leitor de tela não interage com os avisos de erro ou com a estrutura visual
das IDEs, então é como andar no escuro.” (Participante 8)

• “A acessibilidade depende muito do ambiente. Se a ferramenta não tem su-
porte a atalhos ou à leitura das barras laterais, não consigo programar.” (Par-
ticipante 9)

• “Já tentei usar o Eclipse, mas é bem confuso; ele tem muitos botões que o
leitor não lê, e as opções não são muito intuitivas.” (Participante 10)”

Categoria 2: Desafios Técnicos na Programação

Os desafios técnicos relacionados à prática da programação, como erros de sintaxe,
estruturação lógica, indentação e compreensão de mensagens de erro, foram menci-
onados por 9 dos 10 participantes. A ausência de retorno visual torna esses desafios
ainda mais complexos, especialmente quando o leitor de tela falha em sinalizar cor-
retamente os problemas ou quando os erros são sutis e dependem de detalhes visuais,
como pontuação ou espaçamento. As falas abaixo trazem a percepção dos estudantes
cegos em relação a esta categoria.

• “Uso muito de tentativa e erro. Faço o código, executo, e se não rodar, vou
alterando até funcionar.” (Participante 1)

• “A sintaxe, alguns erros em linguagem case sensitive, erros de formatação...
como duas v́ırgulas no lugar de uma.” (Participante 2)

• “Os erros de indentação em Python são os que mais me atrapalham. Um
espaço a mais e tudo para de funcionar.” (Participante 3)

• “Minha maior dificuldade é aprender com conteúdos em v́ıdeo sem que o código
seja disponibilizado.” (Participante 4)

Caṕıtulo 4. Resultados 54

• “Tem código que só consigo resolver se alguém me disser o que está aparecendo
visualmente. O leitor não ajuda nesses casos.” (Participante 5)

• “Tenho dificuldade em saber por onde começar... O maior desafio é saber
quando aparece um erro no VS Code... para o leitor de tela, é como se não
tivesse nada.” (Participante 6)

• “Erro de digitação ou comando mal escrito derruba tudo, e o NVDA não
mostra isso de forma clara.” (Participante 7)

• “A depuração é o ponto mais cŕıtico. Sem saber o que está errado, você fica
perdido.” (Participante 8)

• “Depurar sem feedback visual é muito dif́ıcil. Às vezes, sei que tem erro porque
o programa não roda, mas não sei onde está o problema.” (Participante 9)

Categoria 3: Recursos Educacionais e Inclusão

As dificuldades relacionadas aos materiais didáticos, avaliações e práticas pedagó-
gicas inclusivas foram mencionadas por 8 dos 10 participantes. Os relatos revelam
que, embora alguns professores se esforcem para adaptar os conteúdos, a maioria
dos materiais ainda é distribúıda em formatos visuais inacesśıveis (e.g. PDFs com
imagens sem descrição, v́ıdeos sem transcrição, ausência de versões em texto). Além
disso, foi apontada a falta de preparo pedagógico e técnico por parte de muitos do-
centes e a ausência de suporte efetivo por núcleos de acessibilidade nas instituições.
As falas seguintes relatam as perspectivas desta categoria.

• “Em geral, é o mesmo material dos colegas, só que sem imagens ou gráficos.
E isso prejudica muito o meu aprendizado.” (Participante 1)

• “Hoje está melhor por conta dos documentos em PDF e HTML com texto,
mas antes recebia arquivos cheios de imagens sem descrição.” (Participante 2)

• “Falta material acesśıvel, adequado e de instrução mesmo. O professor precisa
entender como adaptar e como ensinar.” (Participante 3)

• “As avaliações raramente são adaptadas. Muitas vezes, recebo as mesmas
questões que os demais, mas em um formato que não consigo ler.” (Partici-
pante 4)

• “Nem sempre os materiais são adaptados. Às vezes, tenho que recorrer a
gambiarras para conseguir entender.” (Participante 5)

• “Falta preparo por parte dos professores e também sensibilidade para entender
que a acessibilidade não é favor, é direito.” (Participante 6)

• “A universidade não está preparada para nos manter aqui. Não há estrutura
nem acompanhamento especializado para nos ajudar.” (Participante 7)

• “Recebo materiais com imagens e gráficos que não têm descrição. Às vezes,
perco completamente o conteúdo.” (Participante 8)

Caṕıtulo 4. Resultados 55

Categoria 4: Uso e Limites da Inteligência Artificial

O uso de ferramentas de Inteligência Artificial (IA) no apoio à programação foi
mencionado por 8 dos 10 participantes. Muitos relataram experiências positivas ao
utilizar IAs como ChatGPT, Replit AI e Cursor para sugerir ou corrigir códigos. No
entanto, também apontaram limitações relacionadas à falta de integração com leito-
res de tela, dificuldade em interpretar sugestões de código geradas automaticamente
e ausência de explicações detalhadas. A ausência de acessibilidade nas interfaces e na
documentação das IAs utilizadas também foi recorrente nas falas dos participantes,
como pode ser observado abaixo.

• “Gostaria de uma IA pensada para cegos, que descrevesse o que está fazendo
no código e avisasse quando algo não foi lido.” (Participante 1)

• “Usei IA só por curiosidade. O problema é que as respostas são genéricas
demais. Não ajuda muito sem contexto.” (Participante 2)

• “A IA precisa pensar como a gente. Não adianta só completar código, tem
que explicar e ser acesśıvel com leitor de tela.” (Participante 3)

• “Uso o ChatGPT para resolver alguns problemas de código, mas ele nem
sempre entende o que eu quero. Às vezes, preciso reescrever várias vezes.”
(Participante 4)

• “Já testei IA no Replit, ela completou um código para mim, mas não consegui
entender o que ela fez porque o leitor não lia a resposta completa.” (Partici-
pante 5)

• “Quando a IA sugere algo e você não sabe se está certo ou errado, fica depen-
dente. Precisamos de algo mais interativo.” (Participante 6)

• “O que falta é uma IA que se integre com os leitores, que funcione como um
suporte real para navegar e entender o código.” (Participante 7)

• “O Cursor é útil, mas a janela de sugestões nem sempre é lida pelo NVDA.”
(Participante 9)

Categoria 5: Estratégias Individuais de Superação

Apesar das diversas barreiras enfrentadas, 7 dos 10 participantes relataram adotar
estratégias pessoais para superar os desafios na programação. As soluções envol-
vem desde a busca autônoma por tutoriais e fóruns até o uso de tentativa e erro,
apoio de colegas, adaptação do ambiente de estudo e dependência de ferramentas
familiares como o VS Code. Essas estratégias revelam um alto grau de resiliência e
autodidatismo por parte dos participantes, como relatado abaixo, mesmo diante de
estruturas educacionais e tecnológicas frequentemente excludentes.

• “Tento bastante antes de pedir ajuda. Faço o código várias vezes até funcio-
nar.” (Participante 1)

Caṕıtulo 4. Resultados 56

• “Busco muito no YouTube, especialmente canais que explicam passo a passo.”
(Participante 3)

• “Utilizo apenas meu conhecimento prévio e tento lembrar das estruturas que
já vi antes.” (Participante 4)

• “Uso fóruns como Stack Overflow, mesmo que nem sempre consiga entender
tudo.” (Participante 5)

• “Uso métodos alternativos, como copiar exemplos e adaptar, porque nem sem-
pre consigo construir tudo do zero.” (Participante 6)

• “Peço ajuda aos colegas quando não consigo entender um código ou depurar.”
(Participante 7)

• “Me adaptei ao VS Code porque já sei os atalhos e como ele funciona. Uso
sempre a mesma configuração.” (Participante 9)

As categorias revelam que, embora haja avanços na acessibilidade de ferramentas
de programação, persistem desafios significativos tanto no âmbito técnico quanto
educacional. A inteligência artificial aparece como uma aliada promissora, desde que
suas soluções sejam desenvolvidas com base em prinćıpios de acessibilidade digital e
sob orientação pedagógica adequada.

4.1.5 Frequência das Categorias e Subcategorias

A Figura 4.12 apresenta um gráfico de barras que ilustra a frequência de menções
às subcategorias temáticas identificadas durante a análise de conteúdo, organizadas
por categoria principal e diferenciadas por cores para facilitar a visualização. Os
dados foram extráıdos de dois tipos de coleta qualitativa:

• entrevistas semiestruturadas, (Apêndice C), realizadas com os participantes;

• respostas às questões fechadas e abertas do formulário, (Apêndice D), res-
pondidas pelos 10 participantes cegos que estudam e atuam na área de pro-
gramação.

Cada barra representa o número de participantes que mencionaram uma determi-
nada subcategoria em seus relatos.

Vale destacar que o total de participantes é n = 10. As barras do gráfico não represen-
tam indiv́ıduos distintos, mas sim a frequência de menções. Por isso, há sobreposição
entre as barras: um mesmo participante pode ter citado mais de uma subcategoria.
Portanto, os valores expressos não somam 10, mas representam a quantidade de men-
ções individuais por subtema, reforçando a diversidade e a riqueza das experiências
relatadas. O uso de cores permite observar, de forma comparativa, a distribuição das
subcategorias entre as grandes áreas de análise, como Tecnologia Assistiva, Barreiras
Educacionais, Ambientes de Desenvolvimento e Inteligência Artificial.

Caṕıtulo 4. Resultados 57

Figura 4.12: Frequência de Subcategorias por Categoria

Dentre as subcategorias com maior número de menções, destacam-se “Depuração de
erros”(8 participantes) e“VS Code preferido pela compatibilidade”(7 participantes),
pertencentes, respectivamente, às categorias Desafios Técnicos na Programação e
Acessibilidade em Ambientes de Programação. Tais achados evidenciam que, apesar
das limitações enfrentadas, os participantes buscam soluções práticas e se adaptam
a ferramentas mais acesśıveis para realizarem suas atividades de programação.

Outras subcategorias com alta frequência incluem “Falta de material adaptado” (7),
“Estruturação do código” (7), e “ChatGPT, Cursor, Replit usados” (6), indicando
que tanto as barreiras educacionais quanto o uso emergente de ferramentas de In-
teligência Artificial ocupam papel relevante na experiência dos participantes. Já
subcategorias como “Desejo por IA espećıficas para cegos” e “Falta de apoio dos nú-
cleos de inclusão”, mencionadas por quatro participantes, embora menos frequentes,
revelam lacunas importantes relacionadas à personalização tecnológica e ao suporte
institucional.

O gráfico também mostra que diversas estratégias de superação individuais, como
“Tentativa e erro”, “Busca em tutoriais”, e “Pedido de ajuda a colegas”, foram rela-
tadas por mais da metade dos participantes, evidenciando um esforço cont́ınuo por
autonomia frente aos desafios enfrentados.

Caṕıtulo 4. Resultados 58

Portanto, a visualização da frequência das subcategorias reforça a presença de pa-
drões recorrentes nas falas dos participantes, ao mesmo tempo em que revela pontos
cŕıticos de atenção para práticas pedagógicas inclusivas e o desenvolvimento de re-
cursos de tecnologia assistiva mais eficazes.

4.2 Recomendações Técnicas e Pedagógicas

Os dados coletados por meio das entrevistas e questionários evidenciaram diversos
desafios enfrentados por pessoas com deficiência visual no processo de aprendizagem
em programação. Com base nessas evidências emṕıricas, é posśıvel extrair recomen-
dações alinhadas ao objetivo de favorecer ambientes mais inclusivos e eficazes.

As recomendações técnicas derivam diretamente das barreiras enfrentadas pelos par-
ticipantes ao interagir com IDEs e ferramentas de IA, especialmente no que se refere
à compatibilidade com leitores de tela, à organização da interface e à clareza das
mensagens de erro. Já as recomendações pedagógicas emergiram das experiências
relatadas no contexto educacional, incluindo dificuldades com materiais inacesśıveis,
ausência de mediação especializada e inadequações metodológicas.

Recomendações técnicas:

Do ponto de vista técnico, os participantes destacaram a importância da adoção de
ferramentas que sejam compat́ıveis com leitores de tela, como o VS Code, frequen-
temente citado como o editor mais acesśıvel. Por outro lado, IDEs como o Eclipse e
plataformas como o Google Colab (cujas áreas de resposta não são lidas por leitores
de tela) foram apontadas como pouco acesśıveis, sugerindo a necessidade de critérios
de acessibilidade digital na seleção e uso de ambientes de desenvolvimento.

Além disso, os relatos sobre dificuldades na leitura de mensagens de erro indicam a
urgência de ferramentas de depuração acesśıveis, com sáıdas textuais claras e suporte
a atalhos de teclado. Oferecer feedbacks sonoro e textual personalizáveis, pois a
inclusão de sinais sonoros ou resumos textuais sobre erros e sugestões de código pode
auxiliar usuários cegos a compreenderem rapidamente o que precisa ser ajustado no
código. Outro ponto é permitir a reativação das sugestões de código, no caso do VS
Code, visto que os participantes relataram que as sugestões automáticas de código
(ghost text) eram lidas apenas uma vez, exigindo ações artificiais para reaparecer,
como deletar parte do texto e voltar a escrevê-lo. Portanto, as ferramentas devem
oferecer formas acesśıveis de revisão dessas sugestões.

No campo das tecnologias emergentes, o uso de ferramentas de Inteligência Artifi-
cial, como ChatGPT e Cursor, mostrou-se promissor, mas ainda limitado em termos
de acessibilidade. Participantes relataram falhas de integração com leitores de tela
e dificuldades em interpretar respostas automatizadas. Assim, recomenda-se o de-
senvolvimento de IAs assistivas que não apenas forneçam código, mas que sejam
capazes de explicar, estruturar e interagir com o usuário por meio de feedbacks au-
ditivos claros e navegáveis.

Caṕıtulo 4. Resultados 59

Śıntese:
• Utilizar editores e ambientes de desenvolvimento compat́ıveis com lei-
tores de tela, especialmente o VS Code.

• Evitar ou adaptar ferramentas pouco acesśıveis, como Eclipse e Google
Colab.

• Adotar critérios de acessibilidade digital na seleção de IDEs.
• Implementar depuradores acesśıveis, com mensagens de erro textuais
e claras.

• Garantir suporte a atalhos de teclado na navegação e depuração.
• Oferecer feedback sonoro e textual personalizável para identificação
de erros e sugestões.

• Disponibilizar formas acesśıveis de revisar e reativar sugestões auto-
máticas de código.

• Melhorar a integração de ferramentas de IA com leitores de tela.
• Desenvolver IAs capazes de explicar e estruturar código de forma clara
e navegável.

• Assegurar que o código gerado por IAs seja totalmente interpretável
por leitores de tela.

Recomendações pedagógicas:

Do ponto de vista pedagógico, os resultados apontam para uma carência de materiais
didáticos adaptados e de estratégias inclusivas por parte dos docentes. A presença
de aulas com v́ıdeos, materiais com imagens sem descrição textual e avaliações não
adaptadas revela a necessidade urgente de formação docente em acessibilidade edu-
cacional digital. Recomenda-se a adoção de recursos multimodais (texto alternativo,
transcrição de v́ıdeos, documentos acesśıveis) e práticas avaliativas flex́ıveis, que res-
peitem as especificidades sensoriais dos estudantes.

As avaliações e exerćıcios práticos devem estar dispońıveis em formatos compat́ıveis
com recursos de tecnologia assistiva (texto, HTML acesśıvel, LaTeX com estrutura
semântica, etc.), evitando o uso exclusivo de imagens para apresentar trechos de
código. Relatos apontaram ausência de apoio especializado em cursos EAD, o que
dificultou o aprendizado autônomo.

Outro ponto é a utilização orientada de IA como ferramenta didática. O uso de IA
como o ChatGPT mostrou-se eficaz na identificação e correção de erros, mas precisa
ser inserido pedagogicamente de forma cŕıtica, para evitar dependência excessiva e
estimular a compreensão dos conceitos de programação.

Por fim, destaca-se que a maioria dos participantes recorre a estratégias individuais
de superação, como tentativa e erro, tutoriais e ajuda de colegas, o que evidencia
uma lacuna no suporte institucional. Isso reforça a importância de estruturas de
apoio permanentes, como núcleos de acessibilidade atuantes, tutoriais acesśıveis,
monitorias especializadas e espaços de escuta ativa nas instituições de ensino.

Essas recomendações foram constrúıdas a partir das vivências de dez participan-

Caṕıtulo 4. Resultados 60

tes com deficiência visual, com perfis variados, e refletem tanto suas dificuldades
quanto as estratégias utilizadas para superá-las. Assim, espera-se que tais orienta-
ções possam auxiliar na reformulação de práticas educacionais e no desenvolvimento
de tecnologias mais acesśıveis, contribuindo para um ensino de programação verda-
deiramente inclusivo.

Śıntese:
• Produzir materiais didáticos acesśıveis e adaptados, incluindo descri-
ção textual de imagens e v́ıdeos com transcrição.

• Adotar recursos multimodais, como texto alternativo, documentos
acesśıveis e v́ıdeos com legendas e audiodescrição.

• Implementar práticas avaliativas flex́ıveis, respeitando as necessidades
sensoriais dos estudantes.

• Disponibilizar exerćıcios e avaliações em formatos compat́ıveis com
recursos de tecnologia assistiva (texto, HTML acesśıvel, LaTeX se-
mântico).

• Evitar o uso exclusivo de imagens para apresentar códigos ou conteú-
dos essenciais.

• Ampliar a formação docente em acessibilidade educacional digital.
• Oferecer apoio especializado e cont́ınuo aos estudantes, especialmente
em cursos EAD.

• Utilizar IA como ferramenta didática de forma orientada e cŕıtica,
evitando dependência excessiva.

• Estimular o desenvolvimento da compreensão conceitual de programa-
ção, mesmo com uso de IA.

• Criar estruturas institucionais de suporte, como núcleos de acessibili-
dade, monitorias especializadas e tutoriais acesśıveis.

• Fomentar espaços de escuta ativa para acompanhar dificuldades per-
manentes dos estudantes cegos.

Caṕıtulo 5

Discussão

A presente discussão é conduzida à luz do objetivo central da pesquisa: avaliar a
acessibilidade e a usabilidade de ferramentas de Inteligência Artificial e Ambientes de
Desenvolvimento Integrado no ensino de programação para estudantes cegos, iden-
tificando desafios, estratégias e percepções relacionadas à autonomia e à integração
com recursos de tecnologia assistiva. Neste caṕıtulo, os dados emṕıricos oriundos
de entrevista, questionário e experimentos práticos são interpretados criticamente,
em diálogo com a literatura cient́ıfica revisada ao longo do trabalho. A investiga-
ção foi orientada por um conjunto de hipóteses, ver Caṕıtulo 1, que abordam, por
exemplo, o potencial da IA para melhorar a navegabilidade e a produtividade desses
estudantes (H1, H2), bem como as limitações persistentes relacionadas à usabilidade
das ferramentas e à integração com leitores de tela (H3). Além disso, foram con-
sideradas variáveis como o ńıvel de familiaridade dos estudantes com programação
e a comparação entre as etapas com e sem uso de IA (H4 e H5), compondo um
arcabouço interpretativo para a análise.

A escolha metodológica de um estudo de caso com múltiplas unidades de análise
permitiu examinar em profundidade a experiência de estudantes com deficiência
visual em sua formação acadêmica em Computação, respondendo a uma lacuna
identificada na literatura, que frequentemente se concentra nas barreiras enfrentadas
no mercado de trabalho. Ao voltar-se para a trajetória formativa, esta pesquisa
busca compreender como se manifestam as barreiras e os apoios durante o processo
de aprendizagem.

A análise qualitativa dos dados coletados foi organizada com base na técnica de Aná-
lise de Conteúdo (Bardin, 2011), resultando em categorias temáticas que estruturam
a presente discussão:

(i) Acessibilidade em ambientes de programação;

(ii) Desafios técnicos na Programação;

(iii) Recursos Educacionais e Inclusão;

61

Caṕıtulo 5. Discussão 62

(iv) Uso e Limites da Inteligência Artificial;

(v) Estratégias Individuais de Superação.

A adoção dessas categorias permitiu uma leitura sistemática dos dados e favoreceu
o cruzamento entre os achados emṕıricos e os principais conceitos trabalhados na
fundamentação teórica, como acessibilidade digital, recursos de tecnologia assistiva
e inclusão no ensino de programação.

Ao articular os resultados com os referenciais teóricos e as hipóteses formuladas, esta
seção visa aprofundar a compreensão sobre os caminhos e limites da acessibilidade
no ensino de programação para pessoas com deficiência visual, destacando possibi-
lidades de intervenção pedagógica e tecnológica com vistas a uma formação mais
equitativa, autônoma e eficiente.

5.1 Acessibilidade em Ambientes de Programação

A análise dos relatos dos participantes revelou uma disparidade significativa na aces-
sibilidade dos IDEs utilizados no processo de aprendizagem em programação. A
maioria dos estudantes demonstrou preferência pelo Visual Studio Code (VS Code),
apontado como mais responsivo aos leitores de tela, com melhor estrutura de na-
vegação e recursos de autocompletar acesśıveis. Em contraste, ferramentas como o
Eclipse foram frequentemente descritas como confusas, com estruturas de menus e
interfaces que dificultam a interação por meio de recursos de tecnologia assistiva,
como o NVDA ou o JAWS. Essas percepções se alinham às discussões teóricas sobre
os desafios da acessibilidade digital em contextos técnicos. Eckhardt et al. (2019),
ao analisarem recursos de tecnologia assistiva em ambientes computacionais, desta-
cam que a ausência de estrutura semântica adequada e o uso de elementos gráficos
não rotulados são barreiras frequentes enfrentadas por programadores cegos. Da
mesma forma, Wilkens et al. (2021) alertam para a importância do design inclusivo
nas IDEs, enfatizando que muitos desses ambientes foram originalmente concebi-
dos para usuários com visão, resultando em interfaces pouco adaptadas ao uso com
leitores de tela.

Apesar dos avanços em ferramentas de tecnologia assistiva, como leitores de tela e
sintetizadores de voz, persistem limitações importantes. Muitos leitores não con-
seguem interpretar corretamente os elementos visuais complexos das IDEs, como
árvores de diretórios, tooltips1 (moldura flutuante quando se passa o mouse), jane-
las de depuração ou mensagens de erro destacadas por cores. Essas falhas afetam
diretamente a autonomia dos estudantes e a fluidez do processo de codificação, exi-
gindo, muitas vezes, estratégias compensatórias, como copiar o código para editores
de texto mais simples ou recorrer ao aux́ılio externo.

Além disso, a falta de padronização na acessibilidade entre os ambientes de desen-
volvimento gera insegurança no aprendizado. O estudante precisa aprender não

1https://getbootstrap.com.br/docs/4.1/components/tooltips/

Caṕıtulo 5. Discussão 63

apenas a lógica da programação, mas também desenvolver competências de navega-
ção adaptativa diante de ferramentas inconsistentes. Nesse contexto, observa-se que
a acessibilidade não pode ser tratada como um complemento, mas como uma carac-
teŕıstica fundamental na concepção de qualquer recurso educacional digital voltado
à programação.

À luz desses resultados, reforça-se a necessidade de ampliar o compromisso das
comunidades de desenvolvimento de software com os prinćıpios de acessibilidade
desde o design (“born accessible”)2 e de criar padrões técnicos que promovam a
compatibilidade plena com recursos de tecnologia assistiva. Ao negligenciar esse
aspecto, ferramentas tradicionais de TA digitais tornam-se insuficientes para garantir
equidade no ensino de programação, limitando as oportunidades de formação plena
e autônoma para estudantes cegos.

Śıntese da Subseção
• Há grande disparidade na acessibilidade das IDEs utilizadas por estu-
dantes cegos.

• O VS Code foi apontado como o ambiente mais acesśıvel, responsivo
ao leitor de tela e com melhor estrutura de navegação.

• Eclipse e outras IDEs foram percebidas como confusas e pouco aces-
śıveis, com menus complexos e elementos não rotulados.

• Leitores de tela têm dificuldades para interpretar elementos visuais
complexos, como árvores de diretórios, tooltips, janelas de depuração
e mensagens de erro coloridas.

• Essas limitações comprometem a autonomia, exigindo estratégias com-
pensatórias, como usar editores mais simples ou recorrer a ajuda ex-
terna.

• A falta de padronização entre ambientes de desenvolvimento gera in-
segurança e demanda habilidades adicionais de navegação adaptativa.

• A acessibilidade deve ser tratada como caracteŕıstica central, e não
opcional, no design de ferramentas educacionais para programação.

• É necessária a adoção de prinćıpios de design inclusivo (“born accessi-
ble”) e padrões técnicos que garantam compatibilidade com tecnologias
assistivas.

5.2 Desafios Técnicos e Estratégias de Programação

A experiência dos participantes ao lidarem com ambientes de programação revelou
uma série de desafios técnicos recorrentes, especialmente relacionados à sintaxe,
lógica de programação, depuração (debug) e limitações das IDEs utilizadas. Muitos
relataram dificuldade em interpretar mensagens de erro que, por vezes, não são
lidas corretamente pelos leitores de tela. Problemas de sintaxe simples, como o uso
incorreto de delimitadores, letras maiúsculas e minúsculas ou o fechamento de blocos

2https://bornaccessible.benetech.org

Caṕıtulo 5. Discussão 64

de código, foram apontados como causas frequentes de frustração e tempo excessivo
em tarefas que, para videntes, seriam mais simples.

O processo de depuração mostrou-se particularmente complexo. Por não contar com
recursos visuais como destaques de linha ou marcações de erro em tempo real, os
participantes relataram a necessidade de reexecutar manualmente trechos do código
ou utilizar sáıdas (prints) para tentar localizar os problemas. Como apontado por
alguns, esse processo exigia uma compreensão detalhada da estrutura do código e
uma memória de trabalho apurada, o que demandava um maior esforço cognitivo.

Diante desses desafios, os participantes desenvolveram estratégias adaptativas varia-
das. Uma das mais recorrentes foi o uso de recursos externos, como fóruns de discus-
são, blogs e consultas à documentação oficial das linguagens. Outros mencionaram
a estratégia de tentativa e erro, reescrevendo partes do código ou testando diferentes
abordagens até encontrar uma solução funcional. A ajuda de colegas, professores ou
grupos de apoio também se destacou como uma prática comum, especialmente em
momentos em que as barreiras tecnológicas se tornavam intranspońıveis de forma
individual.

Essas práticas estão alinhadas com os pressupostos da aprendizagem construcio-
nista, que enfatiza a participação ativa do estudante na construção do conhecimento,
mesmo diante de dificuldades. Como discute Papert (1986), o ”aprender fazendo” é
essencial na formação em computação, especialmente quando os alunos têm liberdade
para experimentar, errar e corrigir seus erros com base em feedbacks e observações.
No caso dos estudantes cegos, essa abordagem exige também um ambiente acesśıvel
e um suporte pedagógico que reconheça suas especificidades.

Por fim, essas estratégias também refletem um importante grau de autonomia e
protagonismo na resolução de problemas. Apesar das barreiras estruturais, os parti-
cipantes demonstraram iniciativa para contornar os desafios impostos pelos recursos
técnicos limitados. Isso reforça a importância de criar ambientes de aprendizagem
que não apenas removam barreiras, mas também promovam condições para o desen-
volvimento da autonomia na programação.

Caṕıtulo 5. Discussão 65

Śıntese da Subseção
• Participantes relataram desafios recorrentes relacionados à sintaxe,
lógica de programação, depuração e limitações das IDEs.

• Mensagens de erro muitas vezes não eram lidas corretamente pelos
leitores de tela, dificultando a interpretação e correção.

• Problemas simples, como erros de delimitadores, uso incorreto de mai-
úsculas e minúsculas ou blocos não fechados, geraram frustração e
consumo excessivo de tempo.

• A depuração foi apontada como uma das tarefas mais complexas, de-
vido à ausência de recursos visuais como destaque de linha ou marca-
ções em tempo real.

• Estratégias compensatórias inclúıram: reexecução manual de trechos,
uso de prints, consulta a fóruns, blogs, documentação oficial e tenta-
tiva e erro.

• Ajuda de colegas, professores e grupos de apoio foi frequentemente
necessária diante de barreiras tecnológicas mais severas.

• Essas práticas dialogam com prinćıpios construcionistas, valorizando
o aprender fazendo, a experimentação e o ajuste gradual baseado em
feedback.

• A superação das dificuldades evidencia autonomia, protagonismo e
iniciativa dos participantes mesmo em contextos pouco acesśıveis.

5.3 Recursos Educacionais e Inclusão

Os relatos dos participantes revelaram diversos desafios enfrentados em ambientes
educacionais no ensino superior, especialmente no que se refere à falta de materiais
didáticos adaptados, à inexperiência dos professores com recursos de acessibilidade e
à estrutura pouco responsiva das atividades acadêmicas. Muitos estudantes citaram
a ausência de alternativas acesśıveis a conteúdos visuais, como gráficos e diagramas, a
dificuldade de acompanhar videoaulas sem audiodescrição e o recebimento de provas
e exerćıcios em formatos não compat́ıveis com leitores de tela.

Essas experiências evidenciam uma lacuna significativa entre o discurso institucional
sobre inclusão e a prática pedagógica cotidiana. A falta de preparação docente para
lidar com a diversidade funcional compromete a participação plena dos estudantes
cegos e reforça a urgência de se adotar os prinćıpios do Design Universal para a
Aprendizagem - Universal Design for Learning (DUA/UDL). Conforme Meyer et al.
(2014), o UDL propõe a criação de curŕıculos e práticas que ofereçam múltiplas
formas de representação, expressão e engajamento, permitindo que todos os alunos,
independentemente de suas habilidades, possam aprender de forma significativa.

A ausência de materiais acesśıveis e de formação pedagógica adequada cria barrei-
ras adicionais para estudantes com deficiência visual, que precisam constantemente
compensar a negligência institucional com esforços extras. Esses achados dialogam
diretamente com estudos que evidenciam o mesmo cenário: Zen et al. (2023) iden-

Caṕıtulo 5. Discussão 66

tificam que materiais didáticos frequentemente não são compat́ıveis com leitores de
tela, incluindo apostilas, slides e trechos de código apresentados como imagem, di-
ficultando o acompanhamento das aulas e a realização de atividades básicas. De
modo semelhante, Mountapmbeme et al. (2022) destacam que essa falta de acessi-
bilidade, aliada à pouca preparação docente, impacta negativamente o engajamento
e a autonomia dos estudantes cegos ao longo de toda a formação acadêmica. Baker
et al. (2019) também reforçam que a precariedade dos materiais e a ausência de
adaptações sistemáticas intensificam a dependência de apoio externo, contribuindo
para a sensação de isolamento acadêmico. Assim, os relatos deste estudo convergem
com a literatura ao evidenciar que a produção de recursos educacionais acesśıveis
não é apenas uma questão técnica, mas um requisito pedagógico fundamental para
a equidade no ensino de programação.

Śıntese da Subseção
• Participantes relataram falta de materiais didáticos adaptados no en-
sino superior.

• Professores demonstraram pouca experiência com acessibilidade e re-
cursos inclusivos.

• Estudantes enfrentaram ausência de alternativas acesśıveis para con-
teúdos visuais, como gráficos e diagramas.

• Videoaulas frequentemente não possúıam audiodescrição, dificultando
o acompanhamento.

• Provas e exerćıcios eram disponibilizados em formatos incompat́ıveis
com leitores de tela.

• Há uma distância significativa entre o discurso institucional de inclu-
são e a prática pedagógica real.

• O Design Universal para a Aprendizagem (DUA/UDL) é recomen-
dado para promover múltiplas formas de representação, expressão e
engajamento.

• Ambientes inclusivos requerem poĺıticas pedagógicas estruturadas e
proativas.

5.4 Uso e Limites da Inteligência Artificial

Durante a Fase 2 dos experimentos, que contou com a utilização de ferramentas de
IA, os participantes relataram percepções amplamente positivas sobre a experiência.
A maioria destacou que a IA proporcionou maior agilidade na execução das tarefas,
principalmente por meio de sugestões de código, correções automáticas e explica-
ções contextuais em linguagem natural. Esse suporte contribuiu para a redução
do tempo de execução das atividades e para a diminuição dos bloqueios cognitivos,
favorecendo uma experiência de programação mais fluida e menos frustrante.

A acessibilidade também foi beneficiada, ainda que parcialmente. Os participantes
relataram maior compreensão do código e das mensagens de erro com o suporte da
IA, que atuava como uma ”ponte” entre a complexidade sintática e a compreensão

Caṕıtulo 5. Discussão 67

semântica do problema. No entanto, também foram observadas limitações importan-
tes. Algumas respostas geradas pelas ferramentas não eram totalmente compat́ıveis
com os leitores de tela, ou não eram verbalizadas de forma clara, exigindo adapta-
ções ou ajuda externa. Apesar disso, muitos relataram aumento de autonomia, por
conseguirem concluir tarefas sem depender continuamente de colegas ou docentes.

Além disso, emergiram questões relacionadas às alucinações da IA. Em um caso
espećıfico, a ferramenta gerou duas versões distintas de um mesmo algoritmo, sem
sinalização clara para o leitor de tela, e adicionou a palavra ”metanfetamina”, o
que dificultou a escolha da opção correta. Wermelinger (2023) e Chen et al. (2025)
apontam sobre a fragilidade das ferramentas de IA em tarefas de programação:
embora úteis, elas podem produzir respostas factualmente imprecisas ou estrutu-
ralmente incorretas, exigindo do usuário senso cŕıtico e conhecimento prévio para
interpretar e validar as sugestões. Outro ponto relevante diz respeito aos scripts
e prompts utilizados pelos participantes. Observou-se grande variação na forma
como os estudantes solicitavam ajuda à IA, o que impactou diretamente a qualidade
das respostas. Participantes que forneceram prompts mais detalhados e contextuali-
zados obtiveram retornos mais úteis, enquanto aqueles que usaram descrições vagas
ou excessivamente amplas receberam respostas superficiais. Isso está alinhado com
os achados de Philbin (2023) e Zawacki-Richter et al. (2019), que destacam a im-
portância do letramento em IA, isto é, a capacidade de formular instruções claras e
interpretar criticamente o resultado gerado, como competência essencial para o uso
pedagógico eficaz dessas tecnologias.

Esses achados também dialogam com Pandey et al. (2022), que exploram o papel
da IA na promoção da aprendizagem personalizada e inclusiva, e com autores como
Brotosaputro et al. (2024), que discutem a IA como ferramenta de apoio à equidade
digital. No entanto, as limitações observadas, especialmente alucinações, falta de
compatibilidade plena com leitores de tela e inconsistências nas respostas, corro-
boram as advertências de Wilkens et al. (2021) sobre os riscos de se depender de
sistemas de IA não totalmente alinhados a requisitos de acessibilidade e verifica-
bilidade. Assim, a IA demonstrou potencial significativo como aliada na inclusão
digital, ampliando a autonomia e a compreensão de estudantes cegos. Contudo,
sua utilização também evidenciou fragilidades técnicas e pedagógicas, reforçando a
necessidade de modelos mais robustos, maior integração com recursos de tecnologia
assistiva e formação espećıfica sobre como criar prompts eficazes e validar critica-
mente as respostas geradas.

Caṕıtulo 5. Discussão 68

Śıntese da Subseção
• A maioria dos participantes relatou percepções positivas durante a
Fase 2, destacando maior agilidade nas tarefas graças às sugestões de
código e correções automáticas.

• O suporte da IA reduziu o tempo de execução das atividades e di-
minuiu bloqueios cognitivos, tornando a programação mais fluida e
menos frustrante.

• A acessibilidade foi parcialmente beneficiada: houve melhor compre-
ensão de código e mensagens de erro com apoio da IA.

• Algumas respostas geradas não eram totalmente compat́ıveis com lei-
tores de tela, o que exigiu adaptações ou ajuda externa.

• Muitos participantes relataram maior autonomia, conseguindo con-
cluir atividades sem depender de colegas ou docentes.

• Foram identificadas limitações importantes, como alucinações da IA,
incluindo a inserção de termos aleatórios.

• A clareza e qualidade das respostas variaram conforme o prompt en-
viado: instruções detalhadas produziram respostas melhores; prompts
vagos geraram retornos superficiais.

• A IA demonstrou potencial para apoiar aprendizagem personalizada
e equidade digital, segundo a literatura.

• Persistem fragilidades, como inconsistências, problemas de compatibi-
lidade com leitores de tela e riscos associados à dependência excessiva
da tecnologia.

• Conclui-se que a IA é uma aliada promissora, mas exige modelos mais
robustos, integração aprimorada com recursos de tecnologia assistiva
e formação espećıfica para uso cŕıtico e eficaz.

5.5 Estratégias Individuais de Superação

Os relatos dos participantes evidenciaram um conjunto expressivo de estratégias in-
dividuais utilizadas para superar as barreiras encontradas durante as atividades de
programação. Diante das limitações de acessibilidade das ferramentas, muitos de-
senvolveram táticas próprias para lidar com interfaces complexas, mensagens de erro
pouco claras e dificuldades na interpretação do código. Entre as estratégias mais
comuns, destacou-se o uso de leitores de tela combinados com editores auxiliares,
como o bloco de notas, permitindo reorganizar ou isolar trechos de código que eram
lidos de forma fragmentada nas IDEs. Essa prática facilitou a revisão manual do
conteúdo e tornou a depuração mais eficiente. Outra estratégia relatada consistiu
na revisão linha a linha do código, mesmo quando gerado automaticamente pela IA,
como forma de compreender sua estrutura e garantir a corretude lógica. Partici-
pantes também recorreram à navegação por atalhos e ao mapeamento mental dos
ambientes de desenvolvimento, criando rotinas personalizadas para localizar áreas
espećıficas da interface que não eram anunciadas pelo leitor de tela. Além disso, a co-
laboração eventual com familiares, amigos ou colegas videntes surgiu como recurso

Caṕıtulo 5. Discussão 69

pontual para acessar trechos de código inacesśıveis em plataformas como Google
Colab.

Essas estratégias individuais revelam não apenas a criatividade dos participantes,
mas também a necessidade constante de compensar falhas estruturais nas ferramen-
tas de programação. Ao relatar as táticas desenvolvidas, vários participantes refor-
çaram a importância de melhorias nas interfaces de IA, como descrições verbais mais
detalhadas, organização das sugestões de código e acessibilidade plena nos menus
e caixas de diálogo. Embora tais sugestões apontem caminhos para aprimoramen-
tos tecnológicos, elas emergem diretamente de desafios enfrentados cotidianamente
e se configuram como respostas adaptativas a barreiras persistentes. Conforme ar-
gumentam Ferrari e Hurst (2021), o desenvolvimento de soluções digitais inclusivas
demanda a participação ativa dos próprios usuários com deficiência, que são capazes
de identificar nuances de uso muitas vezes inviśıveis a projetistas e desenvolvedores.
As experiências relatadas nesta pesquisa reforçam que tais estratégias individuais,
embora eficazes no curto prazo, não devem substituir a responsabilidade coletiva de
promover tecnologias realmente acesśıveis.

Um aspecto adicional observado nas estratégias de superação refere-se ao uso in-
tensivo da Inteligência Artificial como apoio imediato para a resolução de proble-
mas. Porém, esse recurso, quando utilizado de forma cont́ınua e automática, pode
favorecer uma dependência excessiva, reduzindo o desenvolvimento da autonomia
cognitiva. Autores como Zawacki-Richter et al. (2019) e Michel-Villarreal e Vilalta-
Perdomo (2023) alertam para esse risco, destacando que a IA deve servir como
suporte complementar, e não como substituta do processo mental envolvido na pro-
gramação. Assim, é essencial que as estratégias individuais incluam também práticas
de verificação cŕıtica, compreensão conceitual e depuração manual, garantindo que
o estudante permaneça protagonista do próprio aprendizado.

Caṕıtulo 5. Discussão 70

Śıntese da Subseção
• Participantes desenvolveram diversas estratégias individuais para su-
perar barreiras de acessibilidade durante as atividades de programa-
ção.

• Muitos utilizaram leitores de tela em conjunto com editores auxiliares,
como o bloco de notas, para reorganizar ou isolar trechos de código
que não eram lidos corretamente nas IDEs.

• A revisão linha a linha do código (inclusive do código gerado pela IA)
foi uma prática comum para garantir compreensão da estrutura e da
lógica.

• Estratégias de navegação por atalhos e mapeamento mental das inter-
faces ajudaram a localizar elementos da IDE que não eram anunciados
pelo leitor de tela.

• Alguns participantes recorreram pontualmente a familiares, amigos
ou colegas videntes para acessar trechos de código inacesśıveis em
plataformas como o Google Colab.

• As estratégias revelam criatividade e esforço constante para compen-
sar falhas estruturais das ferramentas de programação.

• Os participantes destacaram a necessidade de melhorias nas interfaces
de IA, como descrições verbais mais detalhadas e sugestões organiza-
das de forma acesśıvel.

• As táticas desenvolvidas reforçam que soluções tecnológicas realmente
acesśıveis devem envolver a participação ativa de pessoas com defici-
ência no processo de design.

• Estratégias individuais, embora úteis, não substituem a responsabili-
dade institucional e tecnológica de promover acessibilidade plena.

• O uso intensivo da IA como apoio imediato foi observado, mas pode
gerar dependência excessiva se não for acompanhado de verificação
cŕıtica e compreensão conceitual.

• A IA deve funcionar como suporte complementar, e não como substi-
tuta do pensamento lógico e da prática de programação.

5.6 Śıntese Representativa

A análise dos dados revelou um panorama multifacetado sobre a experiência de
estudantes cegos na aprendizagem de programação, permitindo identificar comple-
mentaridades, tensões e contradições entre as categorias temáticas discutidas. As
barreiras de acessibilidade em ambientes de programação, como a incompatibili-
dade com leitores de tela e a baixa responsividade de interfaces, emergem como um
obstáculo central, afetando diretamente a autonomia e a produtividade dos estu-
dantes. Ao mesmo tempo, as estratégias de superação adotadas pelos participantes,
como o uso de tentativas sucessivas, apoio de colegas e consulta a tutoriais online,
demonstram um alto ńıvel de iniciativa e resiliência, ainda que essas ações sejam
frequentemente realizadas em condições desfavoráveis.

Caṕıtulo 5. Discussão 71

A discussão apresentada integra os achados emṕıricos das entrevistas, questionários
e experimentos práticos, revelando um panorama complexo sobre a acessibilidade,
usabilidade e autonomia de estudantes cegos no ensino de programação mediado por
ferramentas digitais. Os resultados evidenciam que os ambientes de desenvolvimento
permanecem marcados por barreiras estruturais, como interfaces não padronizadas,
elementos visuais não rotulados e inconsistências no suporte a leitores de tela, que
exigem estratégias compensatórias e elevam o esforço cognitivo dos estudantes. Ao
mesmo tempo, os desafios técnicos relacionados à sintaxe, depuração e reconheci-
mento de erros tornam o processo de aprendizagem mais lento e dependente de
múltiplos recursos externos, reforçando a importância de práticas pedagógicas que
promovam autonomia e compreensão conceitual. A análise também mostra que la-
cunas institucionais, especialmente no que se refere à disponibilidade de materiais
acesśıveis e à formação docente, impactam diretamente a inclusão, obrigando os
estudantes a desenvolver táticas próprias para suprir a ausência de suporte peda-
gógico adequado. Quando inserida nesse cenário, a Inteligência Artificial emerge
como um recurso amb́ıguo: por um lado, amplia a compreensão do código, acelera
a depuração e oferece apoio imediato; por outro, apresenta limitações como aluci-
nações, inconsistências, falta de clareza nas respostas e integração incompleta com
tecnologias assistivas. Por fim, as estratégias individuais de superação demonstram
a iniciativa dos participantes, mas também evidenciam que soluções acesśıveis não
podem depender exclusivamente da resiliência dos usuários, e sim de um ecossistema
tecnológico e pedagógico comprometido com o “born accessible”.

Na Fase 1 do experimento, realizada sem o uso de Inteligência Artificial, observou-se
um cenário marcado por dificuldades recorrentes relacionadas à sintaxe, depuração
manual, interpretação de erros e navegação em IDEs pouco acesśıveis. O processo
de codificação mostrou-se mais lento, dependente de múltiplas tentativas, pesquisas
externas e da exploração linha a linha do código, ampliando o esforço cognitivo e
evidenciando limitações estruturais nas ferramentas utilizadas.

A introdução da Inteligência Artificial na Fase 2 mostrou-se um divisor de águas.
As ferramentas de IA, quando acesśıveis, contribúıram significativamente para a
compreensão de códigos, redução do tempo de execução das tarefas e maior confiança
dos participantes na execução de soluções algoŕıtmicas. Contudo, essas melhorias
estão condicionadas à integração eficiente entre a IA e os leitores de tela, o que nem
sempre foi garantido. Essa contradição evidencia que o potencial das ferramentas de
IA é promissor, mas ainda limitado por questões de usabilidade e design acesśıvel.

Do ponto de vista educacional, os relatos revelaram um descompasso entre a de-
manda por formação inclusiva e a realidade institucional. A escassez de materiais
adaptados, a falta de preparação docente e as barreiras curriculares reafirmam a
urgência de ações estruturantes para garantir equidade no acesso ao conhecimento.
Respondendo às perguntas de pesquisa, pode-se afirmar que:

• (Q1) Como o uso de ferramentas de Inteligência Artificial (IA) em Ambientes
de Desenvolvimento Integrado (IDEs) impacta a acessibilidade de estudan-

Caṕıtulo 5. Discussão 72

tes programadores cegos? O uso de IA impacta a acessibilidade de forma
ambivalente, pois por um lado, melhora a compreensão do código e das men-
sagens de erro ao oferecer explicações em linguagem natural, funcionar como
ponte entre sintaxe e semântica e apoiar a navegação conceitual; por outro,
ainda apresenta limitações importantes, como incompatibilidade parcial com
leitores de tela, dificuldade de leitura das sugestões geradas (especialmente
em plataformas como Google Colab) e problemas de formatação que dificul-
tam a percepção de múltiplas respostas, mantendo barreiras que restringem a
autonomia plena dos estudantes cegos.

• (Q2) De que forma essas ferramentas influenciam a produtividade e o tempo
de execução das tarefas de programação realizadas por esses estudantes?
As ferramentas de IA influenciam positivamente a produtividade ao reduzir o
tempo de execução das tarefas, acelerar a correção de erros, sugerir melhorias
estruturais no código e oferecer apoio imediato durante a depuração. Os estu-
dantes conseguem concluir as atividades com mais rapidez e fluidez quando a
IA é acesśıvel. Porém, em casos em que o leitor de tela não consegue acessar
o conteúdo gerado, parte do benef́ıcio é reduzido pelo tempo gasto tentando
localizar ou compreender as respostas.

• (Q3) Quais são as percepções e desafios relatados pelos participantes em
relação ao uso de IA em comparação ao desenvolvimento sem suporte auto-
matizado? Os participantes relataram percepções predominantemente positi-
vas sobre o uso da IA, destacando maior autonomia, menor frustração, mais
clareza no processo de programação e sensação de apoio pedagógico cont́ınuo.
No entanto, também foram identificados desafios relevantes, como alucinações
(códigos incorretos ou termos aleatórios), respostas incompletas ou confusas,
dificuldade de navegação e leitura pelo leitor de tela, múltiplas versões de
código sem sinalização adequada e risco de dependência excessiva da IA no
processo formativo. Portanto, o uso com IA é visto como vantajoso, mas
requer cautela, verificação cŕıtica e melhorias na integração com recursos de
tecnologia assistiva.

As percepções dos participantes destacam tanto avanços quanto lacunas na usabili-
dade das ferramentas, apontando caminhos para melhorias técnicas e pedagógicas.

Caṕıtulo 6

Diretrizes Técnicas e Pedagógicas para
a Inclusão de Estudantes Cegos na
Programação

Com base nos achados da pesquisa e nas experiências relatadas pelos participantes,
este caṕıtulo propõe diretrizes didático-metodológicas que visam promover a inclusão
efetiva de estudantes cegos no ensino de programação. As proposições foram ela-
boradas à luz das dificuldades identificadas, das estratégias de superação utilizadas
pelos participantes e da análise das ferramentas acesśıveis e do uso da Inteligência
Artificial (IA) como recurso de apoio pedagógico.

6.1 Domı́nio do Leitor de Tela como Pré-requisito Pe-
dagógico

A primeira proposição diz respeito à formação prévia no uso do leitor de tela, especi-
almente o NVDA, ferramenta gratuita e amplamente utilizada entre os participantes.
O domı́nio eficiente do leitor de tela deve ser considerado um pré-requisito funda-
mental para qualquer atividade computacional, inclusive as voltadas à aprendizagem
da programação. Sem esse domı́nio, o estudante enfrentará barreiras não apenas na
escrita de código, mas também na interação com ambientes de desenvolvimento,
sites e demais aplicações educacionais. A formação inicial deve incluir:

Navegação por objeto (usando teclas espećıficas como 7 e 9, ou atalhos do NVDA).
Leitura de mensagens de erro e alertas visuais. Identificação de trechos destacados
(como linhas serrilhadas em IDEs, que indicam erros).

73

Caṕıtulo 6. Diretrizes Técnicas e Pedagógicas para a Inclusão de Estudantes
Cegos na Programação 74

6.2 Conhecimento do Sistema Operacional

Paralelamente ao leitor de tela, é imprescind́ıvel que o estudante compreenda os
recursos básicos do sistema operacional (Windows, Linux ou macOS). Essa fami-
liaridade permitirá a realização de tarefas como: (a) Instalação e configuração de
ambientes de desenvolvimento; (b) Edição de variáveis de ambiente (PATH); e (c)
Execução de comandos no terminal. Sugerimos que os cursos de programação para
estudantes cegos incluam módulos introdutórios de familiarização com o SO em
conjunto com o leitor de tela.

6.3 Minimização da Concorrência Cognitiva no Ińıcio
da Aprendizagem

Diante das dificuldades cognitivas relatadas no uso simultâneo de IDEs e aprendizado
da linguagem, recomenda-se que os estudantes iniciem a prática de programação
por meio de editores simples, como o Bloco de Notas, e utilizem o terminal como
ambiente de execução. Isso permitiria: (a) Foco na lógica e sintaxe da linguagem; (b)
Redução da sobrecarga de comandos e atalhos que as IDEs exigem; e (c) Treinamento
da leitura e interpretação de erros no terminal. Essa abordagem se mostrou eficaz
especialmente entre participantes iniciantes, sendo indicada até que se atinja um
ńıvel razoável de familiaridade com a linguagem e com a navegação por tela.

6.4 Introdução Gradual ao Uso de IDEs

Após o domı́nio dos fundamentos, é posśıvel migrar para IDEs mais robustas, como
VS Code, IntelliJ ou Replit, desde que acompanhadas de materiais instrucionais
acesśıveis. A pesquisa demonstrou que: (a) VS Code é acesśıvel, mas a leitura de
sugestões (texto fantasma) é limitada; (b) Ferramentas como Replit e Google Colab
apresentam trechos não lidos pelo leitor de tela, exigindo ajuda externa. Sugere-se
que tutores e professores forneçam tutoriais com foco na acessibilidade das IDEs,
indicando comandos úteis, atalhos e como configurar recursos como leitura de in-
dentação e mensagens de erro.

6.5 Incentivo ao Hábito de Soletrar e Verificar Sintaxe

A soletração de comandos (Leitor de tela), nomes de variáveis e palavras-chave foi
citada como prática essencial, especialmente para linguagens como Python e Java,
nas quais a diferenciação entre maiúsculas e minúsculas e a indentação são cruciais.
Recomenda-se que os docentes incentivem: (a) Revisão linha a linha com o leitor de
tela; (b) Criação de hábitos de soletrar e verificar cada śımbolo de pontuação; e (c)
Utilização de recursos do NVDA para detecção de indentação.

Caṕıtulo 6. Diretrizes Técnicas e Pedagógicas para a Inclusão de Estudantes
Cegos na Programação 75

6.6 Formação na Pesquisa Autônoma e no Uso Ético da
IA

Uma das principais vantagens observadas no uso da IA foi a capacidade de fornecer
explicações e correções rápidas, inclusive com comentários linha a linha. Contudo,
a pesquisa também mostrou a necessidade de: (a) Orientar os estudantes quanto ao
uso cŕıtico das ferramentas; (b) Explicar como formular boas perguntas (prompts)
para IA; e (c) Ensinar a distinguir boas fontes de pesquisa, tanto em buscadores
quanto em plataformas como GitHub, YouTube e repositórios de livros gratuitos.
A formação para uso da IA deve envolver aspectos técnicos e éticos, destacando
a importância da autonomia e do aprendizado consciente, evitando a dependência
exclusiva da ferramenta.

6.7 Comandos Essenciais para Programadores Cegos

O domı́nio dos comandos de acessibilidade é um pré-requisito fundamental para a
autonomia de estudantes cegos no processo de aprendizagem da programação. Os
participantes da pesquisa relataram, de forma recorrente, que muitas das dificuldades
enfrentadas na utilização de ambientes de desenvolvimento não estavam diretamente
relacionadas à lógica de programação, mas sim à falta de domı́nio sobre o leitor
de tela e sobre os comandos do sistema operacional e das IDEs. Dessa forma,
propõe-se a inclusão de uma etapa introdutória em cursos de programação acesśıvel
voltada exclusivamente à familiarização com esses comandos. Essa formação deve
contemplar quatro pilares principais: (1) comandos do leitor de tela (NVDA), (2)
navegação no sistema operacional, (3) uso de terminal e linha de comando, e (4)
comandos básicos de uma IDE acesśıvel, como o Visual Studio Code.

6.7.1 Comandos do NVDA

O NVDA é o leitor de tela mais utilizado entre os participantes da pesquisa, por ser
gratuito, compat́ıvel com o Windows e altamente personalizável. A tecla NVDA é
a tecla modificadora usada para acionar comandos no leitor de tela NVDA. Ela não
é uma tecla f́ısica espećıfica no teclado, mas pode ser configurada para ser uma das
seguintes:
Insert (Ins) → padrão no layout desktop
Caps Lock → padrão no layout laptop
Os comandos abaixo são essenciais para navegação, leitura de código e identificação
de erros:

A familiaridade com esses comandos possibilita ao estudante identificar mensagens
de erro, navegar entre elementos da interface e compreender estruturas de código
com maior autonomia.

Caṕıtulo 6. Diretrizes Técnicas e Pedagógicas para a Inclusão de Estudantes
Cegos na Programação 76

Tabela 6.1: Comandos principais do NVDA para programadores cegos
Ação Comando
Pausar/continuar fala Ctrl
Interromper completamente Ctrl + Shift
Ler linha atual NVDA + L
Soletar palavra NVDA + K, K
Ler tudo NVDA + ↓
Navegar por objeto (ante-
rior/próximo/pai/filho)

NVDA + Shift + ←/→/$/↓

Ativar objeto NVDA + Enter

6.7.2 Navegação no Sistema Operacional

Muitas tarefas exigem que o estudante manipule configurações, instale programas
ou navegue por diretórios. Abaixo, alguns comandos fundamentais no Windows;
esses comandos favorecem a autonomia digital, especialmente no contexto de ativi-

Tabela 6.2: Comandos úteis do sistema operacional Windows
Ação Atalho
Abrir menu iniciar Tecla Windows
Executar comando Windows + R
Alternar entre janelas Alt + Tab
Abrir terminal Windows + R → “cmd”
Minimizar todas as janelas Windows + D

dades que exigem manipulação de arquivos, variáveis de ambiente e instalação de
dependências.

6.7.3 Uso de Terminal

Aprender a utilizar o terminal é essencial para atividades como compilação, execu-
ção de scripts e navegação em projetos. Recomenda-se que o estudante pratique
comandos básicos de terminal, como:

Tabela 6.3: Comandos básicos de terminal (CMD ou PowerShell)
Ação Comando
Ver conteúdo de uma pasta dir

Acessar uma pasta cd nome_da_pasta

Voltar uma pasta cd ..

Executar arquivo Python python arquivo.py

Verificar variáveis de ambiente echo %PATH%

Caṕıtulo 6. Diretrizes Técnicas e Pedagógicas para a Inclusão de Estudantes
Cegos na Programação 77

Essa familiarização reduz a dependência de interfaces visuais e permite que o estu-
dante tenha mais controle sobre o ambiente de desenvolvimento.

6.7.4 Comandos do Visual Studio Code (VS Code)

O VS Code foi a IDE mais utilizada na pesquisa, destacando-se por sua acessibilidade
relativa. No entanto, exige conhecimento de comandos espećıficos para uso fluido
com leitores de tela. Um aspecto importante observado é que o texto de sugestão
automática no VS Code (texto fantasma) é lido apenas uma vez pelo leitor de tela.
Caso o estudante deseje ouvir novamente, precisa apagar e digitar novamente o
trecho, o que pode gerar frustração caso o aluno não saiba disso. Os principais
incluem:

Tabela 6.4: Comandos úteis do Visual Studio Code com leitor de tela
Ação Atalho
Abrir paleta de comandos Ctrl + Shift + P
Ir para arquivo Ctrl + P
Abrir terminal embutido Ctrl + `
Auto completar Ctrl + Espaço
Ir para próximo erro (Problemas) Ctrl + Shift + M
Cancelar sugestão Esc

6.7.5 Configurações do Leitor de Tela

Para que estudantes cegos possam programar com maior autonomia e eficiência, é
essencial que o leitor de tela esteja configurado adequadamente para as demandas do
ambiente de desenvolvimento. Em especial, é necessário que o NVDA consiga anun-
ciar a quantidade de espaços (fundamental para linguagens como Python), realizar
a soletração de palavras e auxiliar na diferenciação entre erros e warnings ao utilizar
IDEs como o Visual Studio Code. A seguir, apresentam-se orientações práticas para
configurar o NVDA de forma a atender a essas necessidades espećıficas.

1. Anunciar Espaços e Tabulações
Linguagens como Python são altamente senśıveis à indentação. Por isso, é imprescin-
d́ıvel que o leitor de tela informe com clareza a quantidade de espaços ou tabulações
presentes em uma linha de código. Para habilitar essa função no NVDA:

• Pressione NVDA + N para abrir o menu do NVDA.

• Acesse ”Preferências”> ”Configurações...”.

• No painel lateral esquerdo, selecione a opção ”Revisão de fala”.

• Marque a caixa ”Anunciar espaços”, permitindo que o NVDA verbalize cada
espaço em branco.

Caṕıtulo 6. Diretrizes Técnicas e Pedagógicas para a Inclusão de Estudantes
Cegos na Programação 78

• Para que tabulações também sejam anunciadas, vá até a seção ”Pontua-
ção/śımbolos”e ajuste o ńıvel para ”Algumas”ou ”Todas”.

• Além disso, durante a revisão de código, recomenda-se o uso do modo de leitura
caractere por caractere com o comando NVDA +

”
o que facilita a identificação

precisa da formatação de cada linha.

2. Soletração de Palavras

Durante a programação, é comum que erros estejam relacionados à digitação in-
correta de nomes de variáveis, comandos ou palavras-chave. Para auxiliar nesse
aspecto, o NVDA oferece comandos de soletração a seguir:

• NVDA + K: soletra a palavra atual.

• NVDA + K (duas vezes) ou NVDA + ;: soletra com descrição fonética, o que
pode ser especialmente útil para diferenciar letras similares (como ”d”e ”b”).

Embora o NVDA não soletre automaticamente em todos os contextos, o uso cons-
ciente desses atalhos pode reduzir significativamente o tempo gasto na identificação
de erros de digitação.

3. Identificação Sonora de Erros e Warnings no VS Code

O NVDA não interpreta diretamente os ńıveis de severidade das mensagens no
Visual Studio Code (por exemplo, distinguir se uma mensagem é um erro ou apenas
um warning). No entanto, algumas estratégias podem ser adotadas para contornar
essa limitação: Opção 1: Utilização de Complementos com Feedback Sonoro.

É posśıvel instalar extensões como Speech History ou Tone Indicators. Também
há a opção de configurar gestos personalizados com sons, usando o addon NVDA
Remote Sound Extension, que permite associar alertas sonoros espećıficos a tipos de
mensagens. Opção 2: Configurações no Visual Studio Code Instale a extensão Error
Lens (autor: Alexander), que destaca visualmente erros e warnings diretamente no
código. Com o foco na linha de código destacada, utilize o comando NVDA + $
para que o leitor de tela leia a linha inteira, incluindo mensagens como: “linha 10,
erro: variável não definida”“linha 10, aviso: tipo impĺıcito” Dica adicional: pode-se
personalizar os sons do próprio sistema operacional Windows para indicar eventos
como erros ou alertas, criando uma resposta auditiva mais eficaz quando eventos são
disparados pela IDE.

4. Salvando as Configurações no Perfil do NVDA

Após realizar todas as personalizações, recomenda-se salvar as configurações para
que elas sejam mantidas após reinicializações:

• Abra novamente o menu do NVDA (NVDA + N).

• Acesse ”Ferramentas”> ”Salvar configuração”.

Caṕıtulo 6. Diretrizes Técnicas e Pedagógicas para a Inclusão de Estudantes
Cegos na Programação 79

Esse procedimento garante que os ajustes realizados se tornem parte do perfil padrão
de uso do NVDA.

6.8 Considerações Finais

As proposições aqui apresentadas fornecem um referencial prático para educadores,
instituições de ensino e desenvolvedores de ambientes de aprendizagem acesśıveis,
contribuindo para uma educação mais inclusiva, equitativa e tecnicamente eficiente
no ensino de programação para pessoas com deficiência visual.

Caṕıtulo 7

Conclusões

O presente estudo investigou o impacto de ferramentas de Inteligência Artificial (IA)
na acessibilidade e produtividade de estudantes programadores cegos em Ambientes
de Desenvolvimento Integrado (IDEs). A partir de uma intervenção estruturada com
múltiplos participantes, combinando atividades práticas, entrevistas e questionários,
foi posśıvel compreender de forma aprofundada não apenas as barreiras enfrentadas
por esses estudantes, mas também o potencial e as limitações reais da IA quando
integrada às práticas de programação acesśıvel.

De modo geral, os achados revelam que a IA desempenha um papel efetivo como
mediadora cognitiva para estudantes cegos, especialmente quando utilizada para
depuração, reorganização estrutural do código e explicação contextualizada de er-
ros. As ferramentas geraram reduções significativas no tempo dedicado à resolução
de problemas, minimizaram bloqueios cognitivos recorrentes e atuaram como uma
camada interpretativa entre o estudante e a estrutura sintática das linguagens de
programação. Esse efeito foi particularmente evidente quando a IA ofereceu feed-
back textual detalhado, estruturado e explicativo, um formato altamente compat́ıvel
com leitores de tela.

Ao mesmo tempo, a intervenção revelou um contraponto marcante entre a experiên-
cia sem IA (Fase 1) e com IA (Fase 2). Sem o suporte automatizado, os participantes
enfrentaram longos peŕıodos de tentativa e erro, navegação exaustiva linha a linha
e dependência de múltiplas buscas externas para decifrar problemas sintáticos e ló-
gicos. A introdução da IA reduziu drasticamente essas dificuldades, reforçando seu
potencial como tecnologia assistiva.

Entretanto, a intervenção também expôs um conjunto consistente de limitações, que
transcendem aspectos técnicos e se relacionam diretamente ao design das ferramen-
tas. Não é a IA que se mostra inacesśıvel, mas sim as plataformas que hospedam
e exibem as respostas da IA, responsáveis por mediar a interação entre o estudante
e o conteúdo gerado. A acessibilidade de sistemas como Google Colab, Replit ou
mesmo componentes do VS Code mostrou-se insuficiente para leitores de tela, ge-
rando lacunas importantes, como: sugestões de código exibidas em ghost text não

80

Caṕıtulo 7. Conclusões 81

lidas pelo leitor de tela; painéis de sáıda inacesśıveis; botões e elementos dinâmi-
cos sem rótulos; dificuldade em acessar o código gerado ou corrigido pela IA. Essas
barreiras não impedem a IA de funcionar, mas interrompem o acesso do usuário ao
resultado gerado, configurando um problema de acessibilidade das plataformas, e
não, a priori, da tecnologia de IA em si.

Esses achados reforçam um ponto central: Quando integrada a interfaces inadequa-
das, a IA deixa de ser um apoio e passa a ser mais um elemento com o qual o
estudante precisa lutar para conseguir aprender, reduzindo o potencial inclusivo da
tecnologia. A pesquisa, portanto, demonstra que não existe aumento efetivo da au-
tonomia estudantil sem melhorias estruturais nos ambientes de desenvolvimento
e nas plataformas que hospedam modelos de IA.

Além disso, os resultados sugerem que a IA não substitui a necessidade de formação
docente em acessibilidade digital. A experiência dos participantes mostrou que bar-
reiras educacionais persistem mesmo quando a tecnologia funciona adequadamente:
materiais inacesśıveis, ausência de padronização na descrição de interfaces, lacunas
na mediação pedagógica e desconhecimento de ferramentas assistivas se mantêm
como impeditivos significativos. A IA, nesse cenário, atua como apoio, mas não
resolve problemas que são essencialmente instrucionais, curriculares e institucionais.

Outro aspecto relevante diz respeito ao protagonismo dos participantes: mesmo em
ambientes pouco acesśıveis, todos demonstraram estratégias próprias de navegação,
correção e adaptação. A IA, quando acesśıvel, potencializou esse protagonismo,
ampliando a capacidade de resolver problemas de forma autônoma e fortalecendo
a confiança no próprio processo de aprendizagem. Isso indica que a IA pode con-
tribuir não apenas tecnicamente, mas também afetivamente, reduzindo frustrações
históricas associadas a IDEs e ferramentas pouco inclusivas.

Em śıntese, os resultados permitem afirmar que:

• A IA tem impacto positivo robusto na produtividade e na depuração de código,
especialmente pela clareza das explicações.

• A IA melhora a acessibilidade cognitiva, mas não resolve, por si só, a falta de
acessibilidade estrutural das IDEs.

• Persistem desafios cŕıticos de navegação, leitura de sugestões e interpretação
de código gerado por IA, devido a falhas de compatibilidade com leitores de
tela.

• A autonomia dos estudantes aumenta quando IA e leitor de tela operam de
forma integrada, mas diminui quando a interface apresenta rúıdo ou sobrecarga
cognitiva.

• A IA é mais eficiente quando usada como instrumento complementar, e não
como substituto de práticas pedagógicas acesśıveis.

Portanto, a principal conclusão desta pesquisa é que a Inteligência Artificial repre-
senta uma oportunidade concreta e promissora para tornar o ensino de programação

Caṕıtulo 7. Conclusões 82

mais acesśıvel, porém ainda insuficiente enquanto estiver acoplada a interfaces não
projetadas sob a lógica do “born accessible”. Torna-se, portanto, necessário articular
avanços tecnológicos com diretrizes de design universal, formação docente e poĺıticas
institucionais de inclusão para que o potencial da IA seja plenamente concretizado
no ensino de programação para estudantes cegos.

7.1 Trabalhos Futuros

Com base nos resultados obtidos, diversos caminhos promissores podem ser explora-
dos em trabalhos futuros. Uma possibilidade é ampliar a amostra e replicar o estudo
com um número maior e mais diverso de participantes cegos, incluindo estudantes
em diferentes ńıveis de formação (ensino médio técnico, graduação, cursos livres e
pós-graduação) e com variados graus de experiência em programação. Essa expan-
são permitiria compreender de forma mais profunda como perfis distintos interagem
com a IA, quais barreiras são comuns e quais são espećıficas, além de favorecer a
construção de intervenções mais generalizáveis.

Também se recomenda investigar o desempenho e a acessibilidade de ferramentas
de IA em diferentes linguagens de programação e em outros ambientes de desenvol-
vimento. Como os participantes deste estudo utilizaram majoritariamente Python,
Java e C, um desdobramento natural envolve testar a IA em linguagens menos explo-
radas por pessoas cegas, como JavaScript, C, Go e Rust, além daquelas amplamente
utilizadas em cursos introdutórios, como Scratch e blocos visuais acesśıveis. Outro
eixo de análise futura inclui examinar ajustes, personalizações e configurações que
possam melhorar a compatibilidade entre leitores de tela e sistemas de IA, otimi-
zando a experiência dos usuários.

Um eixo de investigação particularmente relevante e alinhado às lacunas identificadas
consiste no desenvolvimento de uma IDE acesśıvel com suporte de IA, concebida
desde o ińıcio sob a perspectiva born accessible. Tal ambiente poderia integrar, de
forma nativa e sem remendos posteriores, recursos como:

• suporte pleno a leitores de tela e braile dinâmico;

• navegação exclusivamente via teclado;

• reconhecimento inteligente de erros com explicações sonoras;

• feedback auditivo estrutural (avisos, estados, alertas);

• sugestões de código lidas de forma clara, segmentada e repet́ıvel;

• organização semântica de painéis, menus e sáıdas;

• modos alternativos de visualização de estruturas algoŕıtmicas;

• comandos de voz e prompts adaptados ao fluxo de leitura linear.

Caṕıtulo 7. Conclusões 83

A criação de uma IDE acesśıvel com IA integrada representa um avanço significativo
para a área, pois eliminaria ou reduziria muitas das barreiras estruturais observadas
neste estudo, sobretudo aquelas relacionadas à falta de padronização semântica e à
inacessibilidade de painéis de sáıda, caixas de sugestão e elementos dinâmicos.

Outro campo de investigação importante envolve a criação de diretrizes pedagógi-
cas e técnicas para o uso da IA na aprendizagem de programação, com foco tanto
em estudantes cegos quanto videntes. Uma contribuição inovadora seria o desenvol-
vimento de um conjunto estruturado de orientações para a construção de prompts
eficientes, éticos e didáticos, contemplando:

• como solicitar explicações de conceitos básicos e intermediários;

• como pedir depuração passo a passo;

• como pedir reescrita acesśıvel de trechos de código;

• como formular perguntas que ajudem na compreensão lógica e algoŕıtmica;

• como identificar e evitar dependência excessiva da IA;

• como utilizar a IA para estudar, revisar e consolidar conteúdos.

Essas diretrizes poderiam se tornar um recurso importante para disciplinas intro-
dutórias, promovendo equidade entre estudantes com diferentes perfis sensoriais e
vivências em tecnologia.

Além disso, estudos longitudinais podem acompanhar, ao longo de semestres ou anos,
a evolução do aprendizado de programação com e sem o suporte da IA. Investigações
dessa natureza permitiriam observar impactos duradouros sobre a autonomia, a
autoconfiança, a retenção de conhecimento e a capacidade de resolução de problemas,
dimensões que transcendem os efeitos imediatos encontrados neste estudo.

Finalmente, é pertinente investigar abordagens h́ıbridas que combinem práticas pe-
dagógicas tradicionais, uso cŕıtico da IA e integração com recursos de acessibilidade.
Essas abordagens poderiam resultar em metodologias didáticas escaláveis, sustentá-
veis e replicáveis, adaptadas tanto para o ensino presencial quanto remoto, contri-
buindo para práticas educacionais inclusivas e para a redução das desigualdades de
acesso ao aprendizado de programação.

Referências

Abhishek, S., Sathish, H., Kumar, A., e Anjali, T. (2022). Aiding the visually
impaired using artificial intelligence and speech recognition technology. In 2022
4th International Conference on Inventive Research in Computing Applications
(ICIRCA), páginas 1356–1362. IEEE.

Albusays, K., Ludi, S., e Huenerfauth, M. (2017). Interviews and observation of
blind software developers at work to understand code navigation challenges. In
Proceedings of the 19th International ACM SIGACCESS Conference on Compu-
ters and Accessibility, páginas 91–100.

Aler Tubella, A., Mora-Cantallops, M., e Nieves, J. C. (2024). How to teach respon-
sible ai in higher education: Challenges and opportunities. Ethics and Information
Technology, 26(1):3.

Alizadehsani, Z., Gomez, E. G., Ghaemi, H., González, S. R., Jordan, J., Fernán-
dez, A., e Pérez-Lancho, B. (2022). Modern integrated development environment
(ides). In Corchado, J. M. e Trabelsi, S., editores, Sustainable Smart Cities and
Territories, páginas 274–288, Cham. Springer International Publishing.

Alves, E. G. C., Santos, Q. P., de Jesus, A. F., Azevedo, R. L., e et al. (2025).
Inclusão no processo de ensino-aprendizagem e diversidade educacional. Revista
ft, 29(142):35–36.

Amin, N., Saeed, A., Khalid, A., Usman, M., e Akram, F. (2024). Comparative study
between jaws® and nvda® in academic performance of students with visual
impairment. British Journal of Visual Impairment, 0(0):02646196241255889.

Baker, C. M., Bennett, C. L., e Ladner, R. E. (2019). Educational experiences of
blind programmers. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, páginas 759–765.

Bardin, L. (2011). Análise de conteúdo. Edições 70, São Paulo.

Bastos, P. A. L. S., Silva, M. S., Ribeiro, N. M., Mota, R. S., e Galvão Filho, T.
(2023). Tecnologia assistiva e poĺıticas públicas no brasil. Cadernos Brasileiros
de Terapia Ocupacional, 31:e3401.

84

Referências 85

Bhagat, S., Joshi, P., Agarwal, A., e Gupta, S. (2024). Accessibility evaluation
of major assistive mobile applications available for the visually impaired. arXiv
preprint, 2407.17496.

Bonito, M. A. (2015). Processos da comunicação digital deficiente e inviśıvel: me-
diações, usos e apropriações dos conteúdos digitais pelas pessoas com deficiência
visual no Brasil. Tese de Doutorado, Universidade do Vale do Rio dos Sinos, São
Leopoldo, Brasil. Tese de doutorado.

Bray, A., Devitt, A., Banks, J., Sanchez Fuentes, S., Sandoval, M., Riviou, K.,
Byrne, D., Flood, M., Reale, J., e Terrenzio, S. (2024). What next for universal
design for learning? a systematic literature review of technology in udl implemen-
tations at second level. British Journal of Educational Technology, 55(1):113–138.
Received: 14 July 2022; Accepted: 5 April 2023.

Brotosaputro, G., Supriyadi, A., e Jones, M. (2024). Ai-powered assistive techno-
logies for improved accessibility. International Transactions on Artificial Intelli-
gence (ITALIC), 3(1):76–84.

Caldeira, V. M. M., Lima, A. F., de Souza, N. E. F., Nicolau, P. C., e de Sousa,
A. M. (2025). Codificando o futuro: A programação na formação de jovens mentes.
Revista Cient́ıfica Arbitrada de Estudos em Engenharia, 7(2). Data de submissão:
17/01/2025. Data de publicação: 17/02/2025.

Cavalcante, R. A. d. S. (2022). Acessibilidade digital enquanto direito humano:
diálogos sobre a usabilidade de dispositivos e de estratégias acesśıveis com pessoas
com deficiência. Dissertação de mestrado, Universidade do Estado do Rio de
Janeiro (UERJ), Rio de Janeiro. Área de concentração: Educação Inclusiva e
Processos Educacionais.

Chemnad, K. e Othman, A. (2024). Digital accessibility in the era of artificial
intelligence—bibliometric analysis and systematic review. Frontiers in Artificial
Intelligence, 7.

Chen, N., Qiu, L. K., Wang, A. Z., Wang, Z., e Yang, Y. (2025). Screen reader
users in the vibe coding era: Adaptation, empowerment, and new accessibility
landscape.

Corso, V., Mariani, L., Micucci, D., e Riganelli, O. (2024). Assessing ai-based code
assistants in method generation tasks. In Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineering: Companion Proceedings,
páginas 380–381.

dos Santos Borges, J. A. (2000). O sistema dosvox: um novo conceito de acesso
de deficientes visuais à informática. Núcleo de Computação Eletrônica da Uni-
versidade Federal do Rio de Janeiro (NCE/UFRJ). Dispońıvel em: http:

//intervox.nce.ufrj.br/dosvox/. Acesso em: 16 julho. 2025.

Referências 86

Eckhardt, K., Schiering, I., Gabel, A., Ertas, F., e Müller, S. V. (2019). Visual
programming for assistive technologies in rehabilitation and social inclusion of
people with intellectual disabilities. In Proceedings of Mensch und Computer
2019, páginas 731–735. Association for Computing Machinery.

Espada-Chavarria, R., González-Montesino, R. H., López-Bast́ıas, J. L., e Dı́az-
Vega, M. (2023). Universal design for learning and instruction: E”ective strategies
for inclusive higher education. Education Sciences, 13(6).

Ferrari, C. e Hurst, A. (2021). Accessible web development: Opportunities to im-
prove the education and practice of web development with a screen reader. ACM
Trans. Access. Comput., 14(2).

Galvão Filho, T. (2022). Tecnologia Assistiva: um itinerário da construção da área
no Brasil. Editora CRV, Curitiba.

Galvão Filho, T. A. (2009). A tecnologia assistiva: de que se trata? In Machado,
G. J. C. e Sobral, M. N., editores, Conexões: educação, comunicação, inclusão e
interculturalidade, páginas 207–235. Redes Editora, Porto Alegre.

Hu”, E. W., Boateng, K., Moster, M., Rodeghero, P., e Brinkley, J. (2020). Exami-
ning the work experience of programmers with visual impairments. In 2020 ieee
international conference on software maintenance and evolution (icsme), páginas
707–711. IEEE.

Khan, M. A., Paul, P., Rashid, M., Hossain, M., e Ahad, M. A. R. (2020). An ai-
based visual aid with integrated reading assistant for the completely blind. IEEE
Transactions on Human-Machine Systems, 50(6):507–517.

Kumar, M., Yadav, H., Yadav, J., e Jha, M. (2023). Intellicode: A speech-based pro-
gramming environment. In Journal of Xi’an Shiyou University, Natural Science
Edition.

Llerena-Izquierdo, J., Mendez-Reyes, J., Ayala-Carabajo, R., e Andrade-Martinez,
C. (2024). Innovations in introductory programming education: The role of ai
with google colab and gemini. Education Sciences, 14(12).

M S, S. R., Joy, E., e J, L. S. (2024). Websight: An ai-based approach to enhance
web accessibility for the visually impaired. In 2024 International Conference on
Science Technology Engineering and Management (ICSTEM), páginas 1–7.

Meyer, A., Rose, D., e Gordon, D. (2014). Universal Design for Learning: Theory
and Practice. CAST Professional Publishing, Wakefield. Acesso em: 02 maio
2019.

Michel-Villarreal, R. e Vilalta-Perdomo, E. L. (2023). Challenges and opportunities
of generative ai for higher education as explained by chatgpt. Education Sciences,
13(9):856.

Referências 87

Mohamed, S., Parvin, A., e Parra, E. (2024). Chatting with ai: Deciphering deve-
loper conversations with chatgpt. In Proceedings of the 21st International Con-
ference on Mining Software Repositories, MSR ’24, página 187–191, New York,
NY, USA. Association for Computing Machinery.

Mountapmbeme, A., Okafor, O., e Ludi, S. (2022). Addressing accessibility barriers
in programming for people with visual impairments: A literature review. ACM
Transactions on Accessible Computing (TACCESS), 15(1):1–26.

Nadukuda, N. (2023). Automating front-end development with ai: From code gene-
ration to intelligent debugging. International Journal of Artificial Intelligence &
Applications (IJAIAP), 2(1):82–88.

Nascimento, M. e Brandão, A. (2019). Um modelo de acessibilidade para cegos em
sistemas de programação visual. In Anais dos Workshops do Congresso Brasileiro
de Informática na Educação, volume 8, página 1467.

Ndlovu, L., Bayaga, A., e Blignaut, S. (2023). Acceptance of Job Access with Speech
(Jaws) as an Assistive Computer Application Software, páginas 307–318. Springer
Nature Switzerland, Cham.

Pandey, M. (2023). Accessibility of Collaborative Programming for Blind and Visu-
ally Impaired Developers. Master’s thesis, University of Michigan.

Pandey, M., Bondre, S., O’Modhrain, S., e Oney, S. (2022). Accessibility of ui fra-
meworks and libraries for programmers with visual impairments. In 2022 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pá-
ginas 1–10. IEEE.

Pandey, M., Kameswaran, V., Rao, H. V., O’Modhrain, S., e Oney, S. (2021).
Understanding accessibility and collaboration in programming for people with
visual impairments. Proceedings of the ACM on Human-Computer Interaction,
5(CSCW1):1–30.

Papert, S. (1986). Constructionism: A New Opportunity for Elementary Science
Education. Cambridge.

Philbin, C. A. (2023). Exploring the potential of artificial intelligence program gene-
rators in computer programming education for students. ACM Inroads, 14(3):30–
38.

Pudari, R. (2022). AI Supported Software Development: Moving Beyond Code Com-
pletion. Tese de Doutorado.

Schanzer, E., Bahram, S., e Krishnamurthi, S. (2019). Accessible ast-based pro-
gramming for visually-impaired programmers. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, páginas 773–779.

Referências 88

Sikha, V. e Others (2024). Ai-fueled transformation in application development co-
ding. International Journal of Communication Networks and Information Security
(IJCNIS), 16(1):78–89.

Sribunruangrit, N., Marque, C., Lenay, C., e Gapenne, O. (2004). Graphic-user-
interface system for people with severely impaired vision in mathematics class. In
The 26th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, volume 2, páginas 5145–5148.

Storer, K. M., Sampath, H., e Merrick, M. A. A. (2021). ” it’s just everything
outside of the ide that’s the problem”: Information seeking by software developers
with visual impairments. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, páginas 1–12.

Veiderma Holmberg, R. L. (2021). The impact of ai-based tools on software develop-
ment work. H2 - master’s degree (two years), Department of Computer Science,
Lund University, Sweden. EDAM05 20211.

Vinaykarthik, B. et al. (2022). Design of artificial intelligence (ai) based user experi-
ence websites for e-commerce application and future of digital marketing. In 2022
3rd International Conference on Smart Electronics and Communication (ICO-
SEC), páginas 1023–1029. IEEE.

Wataya, R. S. (2006). O uso de leitores de tela no teleduc. Interface-Comunicação,
Saúde, Educação, 10:227–242.

Web Accessibility Initiative (WAI) (2022). Introduction to web accessibility. https:
//www.w3.org/WAI/fundamentals/accessibility-intro/. Accessed: April 12,
2023.

Wermelinger, M. (2023). Using github copilot to solve simple programming pro-
blems. SIGCSE 2023, página 172–178, New York, NY, USA. Association for
Computing Machinery.

Wilkens, L., Haage, A., Lüttmann, F., e Bühler, C. (2021). Digital teaching, in-
clusion and students’ needs: Student perspectives on participation and access in
higher education. Social Inclusion, 9(3):117–129.

Zawacki-Richter, O., Maŕın, V. I., Bond, M., e Gouverneur, F. (2019). Systematic
review of research on artificial intelligence applications in higher education–where
are the educators? International journal of educational technology in higher edu-
cation, 16(1):1–27.

Zen, E. (2024). Diretrizes de Acessibilidade em Ambientes de Desenvolvimento Inte-
grado para Estudantes Cegos. Tese de Doutorado, Universidade Federal de Pelotas
(UFPel), Pelotas, Brasil.

Referências 89

Zen, E., Costa, V., e Tavares, T. (2023). Experiências educacionais em disciplinas
de programação de computadores: uma análise qualitativa na perspectiva dos
estudantes com deficiência visual. In Anais do XXXIV Simpósio Brasileiro de
Informática na Educação, páginas 960–971, Porto Alegre, RS, Brasil. SBC.

Apêndice A

Termo de Consentimento Livre e
Esclarecido (TCLE)

T́ıtulo do Projeto: Avaliando o Impacto da IA em um Ambiente de Desenvolvimento
Integrado (IDE) na Produtividade e Acessibilidade de Estudantes Programadores
Cegos

Pesquisadores: Naiara Silva dos Santos (UESB) e Claúdia Pinto Pereira (UEFS)
A inclusão digital é uma necessidade essencial, e a acessibilidade na programação é
fundamental para alcançar este objetivo.

Este projeto busca desenvolver e avaliar estratégias educacionais que utilizem In-
teligência Artificial (IA) para tornar o ensino de programação mais acesśıvel para
estudantes com deficiência visual.

Os objetivos são compreender as necessidades e desafios desses estudantes no apren-
dizado de programação, desenvolver ferramentas e estratégias educacionais acesśıveis
utilizando IA, e avaliar a eficácia dessas ferramentas e estratégias no apoio ao apren-
dizado de programação para estudantes com deficiência visual.

Para isso, você será convidado a participar de entrevistas semi-estruturadas, res-
ponder a questionários online e, possivelmente, participar de grupos focais. As
entrevistas e os questionários abordarão suas experiências e necessidades em relação
ao aprendizado de programação.

Os riscos são mı́nimos e relacionados ao desconforto de responder a perguntas pesso-
ais sobre suas experiências e necessidades. Espera-se que os resultados desta pesquisa
contribuam para o desenvolvimento de ferramentas de programação mais acesśıveis
e eficazes, beneficiando tanto individualmente os participantes quanto a comunidade
de programadores com deficiência visual como um todo.

Não há métodos alternativos espećıficos para este estudo; ele se concentra em en-
tender as necessidades e desenvolver soluções personalizadas.

90

91

Você terá acesso cont́ınuo ao pesquisador responsável para esclarecer quaisquer dú-
vidas antes e durante a realização da pesquisa. Sua participação é voluntária, e você
pode recusar ou desistir em qualquer fase da pesquisa sem qualquer penalidade ou
prejúızo.

Todas as informações coletadas serão mantidas confidenciais, e sua identidade será
preservada em todas as publicações e apresentações dos resultados.

Não haverá despesas para os participantes. Caso haja alguma, será devidamente
ressarcida. Com sua permissão, entrevistas poderão ser gravadas para garantir a
precisão das informações. As gravações serão utilizadas apenas para fins de pesquisa.

Os dados coletados serão destrúıdos após a conclusão do estudo ou integrados em
um banco de dados anônimo para futuras pesquisas relacionadas. Eles serão manti-
dos sob a guarda do pesquisador responsável na Universidade Estadual de Feira de
Santana por no máximo cinco anos.

Os resultados serão compartilhados com a instituição onde a pesquisa foi realizada e,
se posśıvel, com os participantes. Os resultados poderão ser publicados em revistas
cient́ıficas e apresentados em conferências acadêmicas.

Em caso de danos comprovadamente causados pela pesquisa, você tem o direito de
buscar indenização. O Comitê de Ética em Pesquisa (CEP) é um órgão responsável
por avaliar e acompanhar projetos de pesquisa envolvendo seres humanos, assegu-
rando que sejam conduzidos de acordo com prinćıpios éticos. Para dúvidas do ponto
de vista ético, entre em contato com o Comitê de Ética em Pesquisa da UEFS:
cep@uefs.br ou telefone (75)3161-8124.

Feira de Santana-BA, 27 de agosto de 2024.

Apêndice B

Sequência Didática

Objetivos da Sequência Didática

- Avaliar a eficiência e a acessibilidade de ferramentas de programação assistidas por
IA.

- Comparar a resolução de problemas de programação com e sem o uso de IA.

- Identificar as barreiras enfrentadas por programadores cegos no uso de diferentes
ferramentas e tecnologias.

- Propor melhorias para aumentar a autonomia de programadores cegos, com base
no feedback dos participantes.

Considerações

- Linguagem de Programação fica a critério do participante.

- Explicar (eficiência, acessibilidade, autonomia, erros (métricas))

- Autorização para gravação de tela

Passo 1: Apresentação e Contextualização

Duração: 15 minutos

Atividade: Explicar aos participantes o objetivo do teste, o funcionamento básico
das ferramentas de IA a serem usadas, como leitores de tela, sugestões de código
automatizadas e autocompletar.

Ferramentas: Leitores de tela como NVDA, Dosvox ou JAWS. Ferramentas de IA
como GitHub Copilot ou TabNine.

Passo 2: Primeira Atividade - Programação Sem o Uso de IA

Duração: Tempo Livre

92

93

Atividade: Os participantes receberão um problema de programação simples, como
a criação de um algoritmo para ordenar uma lista de números. Eles devem resolver
a tarefa sem o aux́ılio das ferramentas de IA, utilizando apenas o leitor de tela.

Critérios Avaliados:

-Tempo necessário para resolver o problema.

-Dificuldades relatadas pelos participantes (navegação pelo código, depuração, etc.).

-Número de erros encontrados no código final.

Passo 3: Segunda Atividade - Programação Com o Uso de IA

Duração: 45 minutos

Atividade: Os participantes devem resolver um problema semelhante ao da primeira
atividade, desta vez utilizando as funcionalidades de IA (autocompletar, sugestões
de código, etc.). O objetivo é avaliar a diferença de experiência ao usar a IA como
ferramenta de suporte.

Critérios Avaliados:

-Tempo necessário para resolver o problema com o aux́ılio da IA.

- Facilidade de uso das sugestões fornecidas pela IA.

- Qualidade e precisão do código comparado à primeira atividade.

Passo 4: Discussão e Feedback

Duração: 30 minutos

Atividade: Após a conclusão das tarefas, será realizado um momento de discussão,
onde os participantes poderão expressar suas impressões sobre a experiência, como:

- Sugestões para melhorar a acessibilidade dessas ferramentas. Barreiras enfrentadas
em cada atividade (com e sem IA).

- Como as sugestões de autocompletar e a IA impactaram a produtividade.

- Dificuldades espećıficas com o leitor de tela (se houver), especialmente em relação
às sugestões de código.

Ferramentas: Questionário acesśıvel para coletar dados.

Resultados Esperados

Comparação objetiva entre o tempo de resolução e o número de erros com e sem o
uso de IA.

Informações detalhadas sobre a experiência dos programadores cegos, focando nas
dificuldades e benef́ıcios das ferramentas de IA.

94

Sugestões práticas para melhorar a acessibilidade de ferramentas de programação
baseadas em IA.

Identificação de barreiras que ainda precisam ser superadas para garantir total in-
dependência dos programadores cegos ao usar essas tecnologias.

Apêndice C

Roteiro da Entrevista

Objetivo Geral da Entrevista: Obter uma compreensão detalhada das necessidades,
percepções e experiências de estudantes com deficiência visual no aprendizado de
programação.

Objetivos Espećıficos da Entrevista:
1. Identificar as principais barreiras enfrentadas por estudantes com deficiência vi-
sual no aprendizado de programação.
2. Avaliar a eficácia das ferramentas e tecnologias atuais, incluindo aquelas baseadas
em Inteligência Artificial (IA), utilizadas por estudantes e educadores.
3. Coletar sugestões e recomendações para o desenvolvimento de estratégias educa-
cionais e ferramentas de programação mais acesśıveis e eficazes.
4. Entender as práticas de ensino e recursos adicionais que poderiam apoiar melhor
o aprendizado de estudantes com deficiência visual.
5. Obter respostas sobre as expectativas e preferências dos estudantes em relação
às ferramentas de programação acesśıveis.

Público-alvo: Estudantes com deficiência visual que estão aprendendo ou aprende-
ram programação.

Norteadores para a Realização da Entrevista:
Estrutura Semiestruturada: A entrevista será conduzida de forma semiestruturada,
permitindo que o entrevistado tenha a liberdade de responder às perguntas da
maneira que achar mais apropriada.
Não Interrupção: O entrevistador não poderá interromper o entrevistado enquanto
ele estiver respondendo.
Neutralidade do Entrevistador: O entrevistador não deverá orientar ou influenciar
as respostas do entrevistado.
Evitar Vieses: Deverão ser evitados vieses e julgamentos de valor em relação às
respostas dos entrevistados para garantir a imparcialidade e a integridade dos dados
coletados.
Ambiente Confortável: Criar um ambiente confortável e acolhedor para que os

95

96

entrevistados se sintam à vontade para compartilhar suas experiências e opiniões.
Questionários Online: Além das entrevistas individuais, poderão ser utilizados gru-
pos focais para promover discussões interativas e questionários online para alcançar
um número maior de participantes e coletar dados quantitativos e qualitativos.

Critérios para o Convite de Profissionais para a Entrevista: Estudantes com Defi-
ciência Visual em cursos de TICs no Brasil:

o Ter experiência no aprendizado de programação.
o Usar ou ter usado tecnologias assistivas no processo de aprendizagem.

Atividades Pré-entrevista: Elaborar e revisar o roteiro de entrevista, garantindo
que todas as questões norteadoras estejam cobertas.

Selecionar e convidar os participantes com base nos critérios definidos.

Agendar as entrevistas, considerando a disponibilidade dos participantes.

Preparar os materiais e ferramentas necessárias para a gravação e anotação das
entrevistas.

Obter a aprovação do Comitê de Ética para a realização das entrevistas, garantindo
que todos os aspectos éticos sejam considerados.

Realização da Entrevista: - Receber os participantes e fornecer uma breve explicação
sobre o objetivo da entrevista e o uso das informações coletadas.
- Obter o consentimento informado dos participantes, garantindo que entendam seus
direitos e a confidencialidade das informações. - Conduzir a entrevista seguindo
o roteiro preparado, mantendo a flexibilidade para explorar questões emergentes
relevantes.
- Registrar as respostas dos participantes por meio de gravação de áudio/v́ıdeo e/ou
anotações detalhadas.
- Agradecer aos participantes pela contribuição e oferecer informações de contato
para futuras perguntas ou esclarecimentos.

Após a Entrevista: - Transcrever as entrevistas gravadas e organizar as anotações.
- Analisar as transcrições e anotações para identificar temas e padrões recorrentes.
- Classificar as informações em categorias temáticas, como barreiras, soluções, su-
gestões, etc. - Incorporar os dados obtidos na análise geral do estudo, desenvolvendo
recomendações e estratégias baseadas nas respostas dos participantes. - Compar-
tilhar um resumo dos resultados com os participantes, caso tenham interesse, e
garantir que suas contribuições sejam reconhecidas no relatório final.

Algumas questões sobre acessibilidade

Em sua opinião, quais são os principais desafios que você enfrenta ao aprender ou
trabalhar com programação?

97

As ferramentas que você utiliza atualmente atendem suas necessidades de acessibi-
lidade? Por favor, explique.

Quais funcionalidades você considera mais importantes em ferramentas de progra-
mação acesśıveis?

O que você espera de uma ferramenta ou estratégia baseada em IA para ajudar no
aprendizado ou trabalho com programação?

Apêndice D

Questionário Online

Seção 1: Perfil do Participante
Nome:
Idade:
Gênero:
() Masculino
() Feminino
() Prefiro não informar

Nı́vel de experiência em programação:
() Iniciante
() Intermediário
() Avançado

Você é:
() Estudante curso Técnico
() Estudante curso Superior
() Estudante curso Pós-Graduação

Linguagem de programação que você mais utiliza:

Ambiente de desenvolvimento que você utiliza:

Qual leitor de tela você usa? (Pode selecionar mais de um)
() JAWS
() NVDA
() VoiceOver
() Dosvox

98

99

() Outro (qual?):

Seção 2: Barreiras no Ensino e na Prática da Programação Quais são as principais
dificuldades que você enfrenta ao programar? (Pode marcar mais de uma opção)
() Navegação na IDE
() Depuração e correção de erros
() Interpretação de mensagens de erro
() Leitura e escrita de código de forma eficiente
() Acesso a materiais didáticos acesśıveis
() Dificuldade de usar ferramentas visuais
() Outro (qual?):

Você acredita que seu leitor de tela é eficiente para a programação?
() Sim
() Parcialmente
() Não

Como você costuma resolver problemas ou depurar seu código?
() Utilizo apenas meu conhecimento prévio
() Busco ajuda em tutoriais e fóruns online
() Utilizo leitores de tela para interpretar erros e mensagens
() Peço ajuda para colegas ou professores
() Utilizo IA
() Outro (qual?):

Quais são as principais barreiras f́ısicas que você enfrenta no aprendizado ou na
prática da programação (ambiente acadêmico)? () Infraestrutura inadequada
() Ausência de Materiais Adaptados
() Falta de suporte especializado (tutores, instrutores com capacitação em acessi-
bilidade)
() Dificuldade no uso de equipamentos de hardware
() Outro (qual?):

No contexto educacional, quais dificuldades você encontrou ao aprender programa-
ção?

Seu material de estudo ou avaliações são adaptados para acessibilidade? Como?

Seção 3: Uso de Inteligência Artificial na Programação Você já utilizou alguma
ferramenta de Inteligência Artificial para auxiliar na programação?
() Sim
() Não
() Não sei

100

Se sim, quais ferramentas você já utilizou? (Pode marcar mais de uma opção)
() GitHub Copilot
() ChatGPT
() Gemini
() Claude.ai
() Outro (qual?):

Como você avalia a utilidade das ferramentas de IA para programadores cegos?
() Muito útil
() Útil em algumas situações
() Pouco útil
() Não vejo diferença

Você já enfrentou dificuldades ao usar IA para programação?
() Sim (quais?):
() Não

Quais dificuldades você percebe ao usar IA para acessibilidade na programação?

Como você acredita que ferramentas de IA poderiam ser melhoradas para auxiliar
programadores cegos?

Seção 4: Percepção sobre a Acessibilidade e Melhorias Em comparação com métodos
tradicionais, você acredita que a IA pode tornar a programação mais acesśıvel para
pessoas cegas?
() Sim
() Depende da ferramenta
() Não

Você sente que a IA melhora sua produtividade na programação?
() Sim, melhora significativamente
() Sim, mas ainda há barreiras
() Não percebi diferença
() Não

Você acha que as instituições de ensino oferecem suporte adequado para programa-
dores cegos?
() Sim
() Parcialmente
() Não

101

Que melhorias você sugeriria para tornar o ensino de programação mais acesśıvel?

Seção 5: Metodologia de Ensino O professor adaptou a forma de ensino para
atender melhor às suas necessidades? Se sim, de que forma?

Você teve apoio suficiente de professores e tutores para superar barreiras no
aprendizado?

Você conseguiu acompanhar as aulas práticas de maneira satisfatória?

Seção 6:Considerações Finais Você gostaria de participar de futuras pesquisas sobre
acessibilidade na programação?
() Sim
() Não
Algum outro comentário ou sugestão sobre o tema?

Obrigada por sua participação!

