@MASTERSTHESIS{ 2016:2051688283, title = {PathoSpotter: um sistema para classificação de glomerulopatias a partir de imagens histológicas renais}, year = {2016}, url = "http://localhost:8080/tede/handle/tede/389", abstract = "A realização do diagnóstico preciso a partir de imagens histológicas requer médicos patologistas com vasta experiência prática, pois as características dessas imagens conduzem a uma análise subjetiva que muitas vezes dificultam a exatidão do diagnóstico. Sistemas que auxiliam a obtenção de melhores diagnósticos podem minimizar dúvidas e melhorar a qualidade dos diagnósticos, influenciando no aumento da eficácia dos tratamentos médicos. Este trabalho descreve a pesquisa e o desenvolvimento do PathoSpotter, um sistema computacional para auxílio na identificação de patologias a partir de imagens histológicas. O PathoSpotter se propõe a reduzir a carência de trabalhos de apoio ao diagnóstico histopatológico das doenças renais, já que muito tem sido feito na área de neoplasias, mas há pouco material publicado em relação à Patologia Digital aplicada à nefrologia ou hepatologia. Nosso objetivo neste trabalho foi aplicar o PathoSpotter na classificação das glomerulopatias proliferativas, que é uma família de doenças primárias que afetam os rins. O trabalho se baseou em um conjunto de dados composto por 811 imagens histológicas de glomérulos, e foram utilizadas técnicas clássicas de processamento de imagens e histopatologia digital. O PathoSpotter apresentou um desempenho de 88,4% de acurácia, resultado similar ao de outros trabalhos de Patologia Digital que podem ser encontrados na literatura especializada.", publisher = {Universidade Estadual de Feira de Santana}, scholl = {Mestrado em Computação Aplicada}, note = {DEPARTAMENTO DE TECNOLOGIA} }