@MASTERSTHESIS{ 2016:927862593, title = {Estudo comparativo de diferentes classificadores baseados em aprendizagem de m?quina para o processo de Reconhecimento de Entidades Nomeadas}, year = {2016}, url = "http://localhost:8080/tede/handle/tede/554", abstract = "O processo de Reconhecimento de Entidades Nomeadas (REN) ? a tarefa de iden- tificar termos relevantes em textos e atribu?-los um r?tulo. Tais palavras podem referenciar nomes de pessoas, organiza??es e locais. A variedade de t?cnicas que podem ser usadas no processo de reconhecimento de entidades nomeadas ? grande. As t?cnicas podem ser classificadas em tr?s abordagens distintas: baseadas em regras, baseadas em aprendizagem de m?quina e h?bridas. No que diz respeito as abordagens de aprendizagem de m?quina, diversos fatores podem influenciar sua exatida?, incluindo o classificador selecionado, o conjunto de features extra?das dos termos, as caracter?sticas das bases textuais e o n?mero de r?tulos de entidades. Neste trabalho, comparamos classificadores que utilizam aprendizagem de m?quina aplicadas a tarefa do REN. O estudo comparativo inclui classificadores baseados no CRF (Condicional Random Fields), MEMM (Maximum Entropy Markov Model) e HMM (Hidden Markov Model), os quais s?o comparados em dois corporas em portugu?s derivados do WikiNer, e HAREM, e dois corporas em ingl?s derivados doCoNLL-03 e WikiNer. A compara??o dos classificadores demonstra que o CRF ? superior aos demais classificadores, tanto com textos em portugu?s, quanto ingl?s. Este estudo tamb?m inclui a compara??o da contribui??o, individual e em conjunto de features, incluindo features de contexto, al?m da compara??o do REN por r?otulos de entidades nomeadas, entre os classificadores e os corpora.", publisher = {Universidade Estadual de Feira de Santana}, scholl = {Mestrado em Computa??o Aplicada}, note = {DEPARTAMENTO DE TECNOLOGIA} }